Научное издание

Новые материалы, оборудование и технологии в промышленности

Материалы международной научно-технической конференции молодых ученых
Могилев, 19-20 ноября 2009 г.

Технический редактор И.В.Брикина
Компьютерная верстка И.В.Брикина

Министерство образования Республики Беларусь
Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»

Новые материалы, оборудование и технологии в промышленности

Материалы международной научно-технической конференции молодых ученых
Могилев, 19-20 ноября 2009 г.

Подписано в печать 09.11.2009 г. Формат 60х84/16. Бумага офсетная.
Гарнитура Таймс. Печать трафаретная. Усл. печ. л. 10,23. Уч.-изд. л. 11,32.
Тираж 110 экз. Заказ № 745.

Издатель и полиграфическое исполнение
Государственное учреждение высшего профессионального образования
«Белорусско-Российский университет»
ЛИ 02330/375 от 29.06.2004 г.
212030, г.Могилев, пр.Мира, 43.

Могилев 2009

Рассмотрены вопросы разработки новых технологических процессов, оборудования и их автоматизации, проектирования, производства и эксплуатации транспортных средств, энерго- и ресурсосберегающих технологий строительства. Изложены новые методы создания автоматизированных систем расчета и проектирования перспективных конструкций механической передачи. Приведены результаты исследований в области высокоэффективных технологий и машин скважинного производства, информационно-измерительной техники для контроля и диагностики. Рассмотрены способы повышения эффективности субъектов хозяйствования в условиях трансформации экономики.

Сборник предназначен для инженерно-технических и научных работников, аспирантов и студентов ВУЗов.
Секция 7. Социально-экономические проблемы развития общества

АКУЛОВА И.В., МИРОНЧИК Е.А., ЛИПСКАЯ Л.А. Тенденции развития мирового рынка молока и молочной продукции.. 134

АЛЕКСАНДРОВА С.А. Порядок оценки уровня развития предприятия.. 135

БЕНДЕГА А.Г. Влияние концентрации рынка на деятельность предприятия в отраслях экономики Республики Беларусь.............................. 136

БУР А.А. Финансовый контроль на предприятии............................ 137

БОРЬБЕВА В.И. Роль прибыли торговой организации в повышении ее эффективной работы.. 138

БОРЬБЕВА В.И. Внедрение приемов маркетинга в деятельность торговой организации с целью увеличения объема продаж.. 139

ЗОТОВ И.К. Синергетика и социально-экономические проблемы развития общества.. 140

КОХАН О.В. Направления организации маркетинговой деятельности в современных условиях.. 141

КРИВЕНКОВА И.В. Проблемы обеспечения экономики специалистами высшей квалификации.. 142

КРУПЕНЬКО Т.Л. Проблема максимизации прибыли предприятия в условиях конкурентной среды.. 143

КУРОЧКИН Д.В. Взнос вкладов как направление финансового оздоровления предприятия.. 144

ЛИПСКАЯ Л.А., МИРОНЧИК Е.А. Мировой рынок говядины.. 145

ЛИЩЕНКО А.А. Использование «антимонопольного маркетинга» для повышения эффективности функционирования предприятия.. 146

МАРКОВИЧ Е.П. Проблемы нетарифного регулирования внешней торговли Беларуси в период глобализации......................... 147

МАТЬБЕЙКО Е.В. Производственные функции при территориальном размещении факторов производства.......................... 148

МИРОНЧИК Е.А., ЛИПСКАЯ Л.А., АКУЛОВА И.В. Подверженность экономических систем чрезвычайным событиям... 149

МЯКИНЬКА В.В. Направления развития методологии налогового аудита.. 150

ПАШУК М.Л. Адаптация как процесс приспособления личности к новой социальной среде.. 151

ПАШУК М.Л. Анализ адаптивных барьеров, препятствующих социальной адаптации личности.. 152

ПУЩЕНКОВА Т.М. Стратегия товародвижения и необходимость ее разработки.. 153

РАССЕКО Ю.Ю. Оптимальная цена – основной резерв

УДК 629.113
ДИСКОВЫЙ ТОРМОЗНОЙ МЕХАНИЗМ С ПОВЫШЕННЫМИ ДИССИПАТИВНЫМИ СВОЙСТВАМИ

А.А. МЕТТО
Научный руководитель И.С. САЗОНОВ, д-р техн. наук, проф.
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Постоянный рост скоростей движения колесных машин обусловливает необходимость в тормозных механизмах, обладающих улучшенными характеристиками. Суть проблемы заключается в том, что при торможении с больших скоростей тормозные механизмы должны преобразовать значительное количество кинетической энергии колесной машины в тепловую энергию, что неизбежно приводит к увеличению тепловой нагрузки непосредственно в области контакта тормозных колодок с тормозным диском.

Неравномерное нагревание приводит к изменению нарушенному пло-
скости рабочих поверхностей, способствуя ускоренному износу в местах,
имеющих наивысшую температуру. Как следствие, происходит неравномерная выработка тормозного диска в радиальном направлении, измене-
ние его толщины по окружности и деформация рабочей поверхности. В
двух последних случаях при торможении имеет место вибрация на педа-
лях тормоза и рулевом колесе (из практики известно, что вибрация станови-
тся ощутимой, если тормозное бение диска превышает величину 0,1 мм). Уве-
личивается свободный ход педали тормоза и нарушается плавность тор-
можения, так как тормозной диск «стремится» переместить тормозные ко-
лодки на величину своего бienia. Этому негативному явлению препятство-
вуют упротые резиновые манжеты тормозных цилиндров, однако полное растормаживание колес в этом случае невозможно. Вследствие этого, при движении колесной машины возникает дополнительное сопротивление.

При движении колесной машины с интенсивными разгонами и тор-
можениями тормозные диски сильно разогреваются. Если разогретый до высокой температуры тормозной диск быстро охладить, возникает дефор-
мация (коробление диска), в результате которой будет наблюдаться бение рабочих поверхностей диска относительно оси вращения ступицы колеса. Происходит уменьшение площади контакта тормозных колодок с тормозным диском. Поэтому для остановки колесной машины, при прочих равных условиях, требуется приложить большее усилие на педаль тормоза. По мере увеличения степени износа тормозного диска может возникнуть си-
туация, когда сила давления, развиваемая тормозным цилиндром, будет...
недостаточна для обеспечения надежного торможения. Как следствие, тормозной путь становится недопустимо большим, а на дорогах с низким коэффициентом сцепления (в зимних условиях эксплуатации) ситуация многократно ухудшается и может послужить причиной дорожно-транспортного происшествия.

Из всего вышеизказанного можно сделать вывод – увеличение эффективности тормозных механизмов должно идти по пути снижения термоприпрыжности в области контакта тормозных колодок с тормозным диском.

Проблема термоприпрыжности накладывает определенные ограничения на конструкцию тормозных колодок. Они также должны охлаждаться, но, в отличие от тормозных дисков, как раз должны препятствовать тепло. Нагреваясь сами, они обязательно начнут греять рабочие тормозные цилиндры, а те, в свою очередь, тормозную жидкость. Если тормозная жидкость закипит, тормозные механизмы перестанут работать, что может принести к тяжелым последствиям. Поэтому важно обеспечить тепловой барьер между функциональными накладками и металлической основой тормозной колодки. Известны конструкции, предусматривающие для решения этой задачи принудительную систему охлаждения.

Существенное уменьшение термоприпрыжности в области контакта тормозных колодок с тормозным диском возможно только за счет введения дополнительной пары трения. Известны конструкции, когда на один и тот же тормозной диск устанавливаются несколько суппортов, либо применяются многопоршневые суппорты. Однако эти варианты приводят к существенному снижению надежности тормозных механизмов за счет ускоренного износа тормозных дисков. Очевидно, что для реализации тормозного момента «в два потока» желательно использовать различные участки тормозного диска, чтобы обеспечить повышение эффективности тормозного механизма без снижения его надежности.

Нами разработан дисковый тормозной механизм для колесных машин оригинальной конструкции, обладающий рядом преимуществ:

– повышенной энергоемкостью вследствие увеличенной площади поверхности, находящихся во фрикционном контакте;
– улучшенными эксплуатационными характеристиками за счет снижения теплотранспорной в зоне контакта тормозных колодок и диска;
– адаптивностью к САБ, обеспеченней за счет использования устройства измерения фактически реализуемого колесом колесной машины тормозного момента, позволяющего осуществлять постоянный мониторинг состояния опорной поверхности в процессе торможения колесного транспортного средства, что повышает эффективность использования САБ.

Дисковый тормозной механизм с повышенными диссипативными свойствами (рис.1) содержит держатель 1, посредством которого установ-
Секция 4. Инновации в строительстве

АЛЕКСЕЕВЕЦ В.И. Несущая способность нагельных соединений деревянных конструкций при малоцикловых нагрузках……… 83
АЛЕКСЕЕВЕЦ И.И. Работа винтцентрированных стальных железобетонных элементов при малоцикловых нагрузках со знакопеременными эксцентриситетами……………………………………… 84
БАБИЧ В.Е. Влияние повторных кратковременных нагрузок на кривизн у неразрезных железобетонных балок………………… 85
БОЛОЩЕНКО Ю.Г., ВОЛКОВА Е.И., СЛАВИНСКАЯ М.А. Отделочные составы для текстильных покрытий с использованием вторичного сырья……………………………………………………… 86
БОЛОЩЕНКО Ю.Г., ХМЕЛЬНИЦКИЙ Е.С., СЕМЕНЮК И.С. Особенности деформирования бетона в условиях малоциклового нагружения……………………………………………………………………….. 87
БОРОДЮК Н.О. Технология получения сухих цементно-несущих смесей с добавками модификатора для покрытий полов……………… 88
БУДКОВА О.В. Инженерно-экологический мониторинг управления качеством автомобильных дорог на примере РУП «Могилевавтодор»………………………………………………………………………… 89
ГОМОН П.С. Работа железобетонных балок таврового сечения при действии повторного нагружения……………………… 90
ГОМОН С.С. Исследование деформаций кососжимаемых железобетонных колонн при малоцикловых нагрузках…………… 91
ГОРОБЧЕНКО Е.В. Обоснование применения тепловых насосов в инженерных системах объектов придорожного сервиса… 92
ДАНИЛОВ С.В., ЖИЛИНСКИЙ Д.И., СПИЗЬКИЙ К.Ю. Использование полимерных отходов в самовулканизирующихся смесях 93
КОВШАР С.Н. Система прогнозирования морозостойкости бетонов……… 94
КОЗУНОВА О.В., СИГАЙ Е.А. К нелинейному расчету неоднородных сред с использованием степенной функции в законе деформирования основания……………………………………………… 95
КОРНИЧУК А.И. Прочность и трещиностойкость наклонных сечений изгибающих железобетонных элементов при действии малоциклических знакопеременных нагрузках………………………… 96
ЛОБОВ А.В., ПРИХОДЬКО Е.М., СЕМЕНЮК И.С. Многопустотные железобетонные преднапряженные плиты, изготовленные с применением песков отработанных формовочных смесей………………………………………………………… 97
МАРГУНОВ В.С. Матричная модель анализа и оценки производственно-хозяйственной деятельности предприятий дорожной отрасли………………………………………………….. 98
ГАЛЮЖИН А.С. Способ очистки сжатого воздуха пневмоцистем... 65
ГОЛОВЧЕНКО Ю.А. Сравнительный анализ стохастической и детерминированной методик расчета потребности в капитальном ремонте автомобилей для автотранспортного предприятия............. 66
ДУБОВИК Д.А. Методология проектирования силового и рулевого приводов колес внедорожных машин................................. 67
ДУБОВИК Д.А. Кинематическая оценка рассогласования углов поворота управляемых колес мобильной машины.................. 68
КЕЛЯСБЕВ В.В., ГЕНЕРАЛОВА А.А. Проблемы обеспечения долговечности листовых рессор... 69
КУТУЗОВ В.В., КУТУЗОВА Е.В. Влияние наработки с начала эксплуатации и сезона использования на внутренний режим работы строительных и дорожных машин.......................... 70
КУТУЗОВ В.В., КУТУЗОВА Е.В. Промышленное использование дробилок ударного действия с вертикальным ротором......................... 71
ЛИНИК Д.А., КАЗЬМИН А.А. Оптимизация мощности автосервисных предприятий с использованием табличного процессора MS EXCEL... 72
ЛИСИЧКИН А.С. Повышение тяговых свойств карьерной техники путем совершенствования привода ведущих колес........... 73
ЛУКАШКОВ Н.Н. Стенд для определения деформаций пневмощаров... 74
МАКАЧАРИЯ Д.Ю. Совершенствование методики оценки эффективности использования строительных и дорожных машин.... 75
ПЫШКИН Р.В., ГОРБАТЕНКО Н.Н., РЕГИНА В.В. Алгоритм защиты от аварийных режимов работы гидромеханической передачи карьерного самосвала... 76
СЛАВИНИСКИЙ А.А. Бортовые диагностические комплексы.... 77
СТРАЧУК Н.В. Оптимизация организации обслуживания и ремонта грузовых автомобилей на магистральных предприятиях........... 78
СТРАЧУК И.В., КОНЕЦЕВИЧ П.С. Автоматизация оперативно-производственного управления текущим ремонтом автомобилей...... 79
СУДАКОВА В.А. Диагностирование зубчатых зацеплений трансмиссий по суммарному угловому зазору... 80
ШАМАЛОВА М.Г. Диагностирование трансмиссий машин на стационарных стендах... 81
ЯСОВИЧСКИЙ О.Э., КАРТОШКИНА Т.Г., ТУРКО А.Ю. Формирование анимационной картины курсового движения колесной машины по результатам его имитационного моделирования.. 82

УДК 621.791.763
ТЕОРЕТИЧЕСКИЕ И ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ БАЛОЧНЫХ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ С ВНЕШНИМ ЛИСТОВЫМ АРМИРОВАНИЕМ (ТИПА КНЭСК)
В.Н. МЕДВЕДЕВ
Научный руководитель С.Д. СЕМЕНЮК, д-р техн. наук, доц.
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь
Сборные и монолитные железобетонные конструкции с внешним армированием получили распространение в различных отраслях строительства в нашей стране и за рубежом. Концентрированное расположение полосовой, листовой арматуры на внешних гранях сечения конструкций позволяет снизить их массу, получить экономию стали и уменьшить размеры сечения по сравнению с железобетонными.
Внешняя арматура в виде листов или прокатных профилей позволяет эффективно использовать сталебетонные конструкции с большим процентом армирования при ограниченных размерах сечений, а при двойном армировании заменять ими стальные конструкции с экономией стали до 45%.
Проводимые совместно с И.М. Кузменко исследования новых конструктивных форм элементов с внешним листовым армированием будут способствовать более эффективному строительству.
Актуальность научных исследований заключается в численных и экспериментальных исследованиях, описании фактической работы балочных конструкций с внешним листовым армированием, на основании которых получена оценка несущей способности и деформативности композитных несущих элементов строительных конструкций, а на основании полученных данных – прогнозирование работы композитного несущего элемента при различных стадиях напряженно-деформируемого состояния.
При оценке прочности и деформативности исследуемых конструкций существуют расчетные методики требующие экспериментального подтверждения применительно к исследуемым конструктивным элементам. К таким методикам можно отнести расчет по деформационной модели и расчет по упрощенной модели.
Расчет прочности сечений, нормальных и продольной оси элемента по упрощенной модели выполняется с использованием геометрии сечения, прочностных и деформативных характеристик стали и бетона.
Определение предельных усилий в нормальных сечениях основывается на следующих предпосылках:
– связь между напряжениями и деформациями бетона, а также напряжения и деформации арматуры принимают в виде диаграмм по рис. 1;
– для средних деформаций бетона и арматуры считается справедливым линейный закон распределения по высоте сечений;
– в качестве расчетного принимают сечение со средней высотой сжатой зоны a, соответствующей средним деформациям;
– сопротивление расчетного сечения будет исчерпано, если деформации крайних сжатых волокон бетона для растянутой арматуры достигают предельных значений.

Прочность нормальных сечений находится в зависимости от степени использования сопротивления сжатого бетона и растянутой арматуры.

![Diagram](image)

Рис. 1. Диаграммы <σ - ε>

Проверку прочности нормальных сечений производят из условий (рис. 2)

$$M \leq M_0 = 0,5 f'_c \cdot b \cdot z \left[\left(1 + \lambda \right) d_0 - 0,33 \left(1 + \rho \right) \right] + \sigma_{as} \cdot A_{as} \left(d - c' \right)$$ \hspace{1cm} (1)

![Diagram](image)

Рис. 2. Поперечное сечение плиты с КНЭСК при расчете прочности нормальных напряжений

Высокопрочная цементуемая боросодержащая сталь………………… 45
КАЛИМУЛЛИН Р.Р., АСТАЩЕНКО Т.В., РОДЬКИН И.М. Критерии оценки качества зубчатых колес после цементации………… 46
НАЗАРОВА О.И. Состояние стали после плазменной резки………………… 47
НОВИКОВ А.К. Абразивная активация поверхности электродов потоком электролита-суспензии…………………………… 48
ШЕВЧУК М.О., ШИШАКОВ Е.П. Получение новых видов смол для литьевого производства………………………………… 49
ШЕМЕНОВ В.М. Структурные изменения в твердых сплавах при их обработке в высоковольтном тлеющем разряде………………… 50

Секция 2. Новые технологии в сварочном производстве

БЕДНИК Т.И. Методика определения сварочного тока при рельефной сварке «остров гранью»……………………………………………… 51
БОЛОТОВ С.В., ИВАНОВА Л.Е. Влияние параметров режима сварки теплоустойчивых сталей на их магнитные характеристики… 52
ДУБАЛОВ П.Ю. Статистический анализ уровня качества сборочного-сварочных работ при производстве башенного крана…… 53
КУРЛОВИЧ И.В., ПОЛЯКОВ А.Ю. Программное управление регулятором цикла сварки………………………………………………… 54
ЛАТУН Т.С. Обоснование возможности ремонта магистральных трубопроводов пайкой……………………………………………… 55
ЛИНКОВА А.В. Применение газа МAF (метапиэтенил-алленовая фракция) в сварочном производстве……………………………… 56
ЛУПАЧЕВ А.В. Физическая модель перехода капель электродного металла в сварочную ванну при дуговой сварке оцинкованных сталей………………………………………………………… 57
ПОЛЯКОВ А.Ю. О взаимосвязи параметров режима контактной рельефной сварки и характеристик перемещения подвижного электрода…………………………………………………………………… 58
ФЕДОСЕНКО А.С. Исследование абразивного износа плазменных керамических и металлокерамических покрытий……… 59
ХЛЫСТУНОВ Р.С. Зависимость козырьковой силы металла сварных трубопроводов от степени наводораживания……………… 60
ЧЕРНЫЙ А.Н., ИВАНОВА Л.Е. Механизм изменения козырьковой силы сварного соединения стали 20 под действием одноосных растягивающих напряжений……………………………………… 62

Секция 3. Транспортные и строительные машины

БЕЗДИНОК Д.В. Влияние качества рабочей жидкости на работоспособность гидропривода……………………………………………… 63
ВОЛОЩУК А.А. Компоненты системы автоматического управления торможением на основе анализа сила…………………………… 64
СОКОЛ В.А. Влияние состояния режущего инструмента на динамические процессы при резании .. 28
СУХОЙ С.А. Комбинированная материално-силиовая упрочняющая обработка поверхностей деталей машин 29
ФИЛИПЕНКО Е.В. Исследование и моделирование свойств песчано-глинистой формовочной смеси .. 30

Секция 1.2 Механика машин и механизмов
ВОЛОЧУК А.А. Расчет открытых передач зацеплением при курсовом проектировании по деталям машин 31
ГАЛЮЗИН Д.С., ГОНЧАРОВ П.С., ЧЕХОВСКИЙ А.Г. Применение планетарной прессионной передачи в исполнительных механизмах имитационной технике 32
ГАЛЮЗИН Д.С., ГОНЧАРОВ П.С., ЧЕХОВСКИЙ А.Г. Нормирование точности планетарной прессионной передачи 33
ДАВЫДЕНКО Д.В. Анализ моментов функциональных шарикоподшипниковых передач в статике 34
КРИВОНОГОВА Е.Г. Использование принципа модульного проектирования при разработке конструкции прессионного редуктора ... 35
МАТВЕЕВ А.К. Автоматизация расчета ременных передач и построение геометрических моделей шкивов 36
НИКИТИН А.П. Разработка алгоритма синтеза кулисного механизма с кривонаправленной формой кулисы 37
ПЕЧКОВСКАЯ О.Е. Экспериментальные исследования передач с повышенным техническим уровнем 38
ПЕЧКОВСКАЯ О.Е. Повышение надежности зубчатых передач на модификации зубчатой передачи 39
ПРУДНИКОВ А.П. Проектирование планетарных шариковых передач с различными профилями пазов на ведущем валу 40
РОГАЧЕВСКИЙ С.Н. Кинематическая точность червячной передачи с телами кривой на червяке ... 41

Секция 1.3 Технологии получения и обработки новых материалов и покрытий
ГАЛИМОВА Н.Я., ВОРОНИЦОВ С.А. Оборудование и технология нанесения полимерных порошковых покрытий электрохимическим способом 42
ГАЛИМОВА Н.Я., ЗВЕРЕВ Э.В. Оборудование и технология нанесения световозвращающих полимерных порошковых покрытий ... 43
ИГОНИН В.А. Формирование износстойкого поверхностного слоя методом борирования .. 44
КАЛИМУЛЛИН Р.Р., АСТАШЕНКО Т.В., САДРИЕВ Р.Ш. Высоту сжатой зоны «х» находит из уравнения

$$A_1 x^3 + A_2 x + A_3 = 0;$$

где

$$A_1 = 0,5(1 - \lambda^2) b;$$

$$A_2 = \alpha_0 (1 - \lambda) \frac{f}{f_c};$$

$$A_3 = - \alpha (x - c);$$

$$\lambda = \frac{1 - \frac{f}{f_c}}{\epsilon_{r_0}};$$

$$\alpha = \frac{E_0}{E_r};$$

$$\sigma_x = \frac{\alpha f (x - c)}{(1 - \lambda) x}.$$
Исходя из описанной схемы излома элемента, разрушающий момент и разрушающая поперечная сила в наклонном сечении равны:

\[M = f_{\text{a}} A_1 \eta_1 + f_{\text{a}} A_2 \eta_2 \] \hfill (9)
\[Q = f_{\text{a}} A_2 \sin(\theta) + Q_1 \] \hfill (10)
\[Q = f_{\text{a}} A_2 \cos(\theta) - f_{\text{a}} A_1 \] \hfill (11)

Формула (9) выражает сумму моментов внутренних усилий относительно точки приложения равнодействующей сжатой зоны сечения, а формулы (10, 11) сумму проекций внутренних усилий на нормаль к продольной и вертикальной оси элемента. В формулах \(A_1, A_2, A_3 \) – площадь сечения соответственно нижнего опорного листа, фасонной арматуры; \(\eta_1, \eta_2 \) – расстояния до точки \(O \) соответственно от центра тяжести упрочняющего элемента КНЭСК и центра тяжести нижнего опорного листа.

Величина разрушающей поперечной силы \(Q_c \), воспринимаемой бетоном сжатой зоны, носят полуэмпирический характер и зависит от геометрических размеров сечения, марки бетона и от угла наклона трещины. Её значение вычисляется исходя из выражения

\[Q_c = \frac{B \cdot f_{\text{a}} \cdot b \cdot d_1^2}{c} \] \hfill (12)

где: \(B \) – эмпирический коэффициент; \(b \) – ширина прямоугольного сечения; \(c \) – длина проекции наклонного сечения на ось элемента; \(d_1 \) – рабочая высота сечения; \(f_{\text{a}} \) – предел прочности бетона при растяжении.

При проведении экспериментальных исследований балочных конструкций с внешним листовым армированием, были поставлены следующие цели и задачи:

– установление физико-механических и деформативных свойств бетона и стали;
– проведение серии экспериментальных исследований процесса поэтапного загружения экспериментальных образцов КНЭСК;
– обоснование и определение геометрических размеров опытных образцов;
– изучение влияния размеров фасонной арматуры на прочность, деформативность и трещиностойкость конструкции;
– изучение влияния геометрических размеров элемента на несущую способность;
– определение характера предельного состояния;
– поиск наиболее рациональных и эффективных способов анкеровки листовой арматуры;
– определение деформативности образцов в целом и деформативности контакта, между листом и бетоном.

СОДЕРЖАНИЕ

Пленарное заседание

МЕТО А.А. Дисковый тормозной механизм с повышенными диссипативными свойствами.…………………………………… 3

МЕДВЕДЕВ В.Н. Теоретические и экспериментальные исследования балочных изгибаемых элементов с внешним листовым армированием (тип КНЭСК).…………………………………… 7

Секция 1.1 Технологии, машины, автоматизация машиностроения

АРХУТИК С.В. Стабилизация тепловых деформаций шпиндельных узлов при высокоскоростной обработке……………… 13

АФАНЕВИЧ В.В. К вопросу об исследовании маслопоглощения поверхности…………………………………………………… 14

БОЙДАРЕВ К.А. Исследование процесса криогенного измельчения полимерных материалов……………………………… 15

ЗАБЕЛИН Д.А. Использование методов метрического распознавания для оценки качества сборки червячных передач……… 16

ЗВЕРОВИЧКОВ Е.А. Моделирование процесса низкотемпературного разрушения оболон на деталях из полимерных материалов……………………………………………………………………………… 17

КАЗАКОВ А.В. Параметрическая оптимизация технологических переходов выполняемых на токарном станке с ЧПУ………………………………………………………………………………………… 18

КОРЯКЕВИЧ А.Ф. Экологичность технологии поземного производственного ресурса двухкарбидного твердофазового инструмента……………………………………………………………………………… 19

КОШЕЛЕВА Ю.Н. Обеспечение качества поверхностного слоя при профильном глубинном шлифовании………………………… 20

МЕЛЕНЦУК М.В. Формализация выбора технологических баз деталей как основа его автоматизации………………………… 21

МИРОНОВА М.Н. Механизм логического вывода интеллектуальной системы расчета станочных приспособлений……… 22

МИРОНОВА М.Н. Выбор структуры станочных приспособлений на основе использования продукционных правил…… 23

ОМЕСЬ Д.В. Анализ влияния тепловых деформаций базовых деталей станка на точность обработки………………………… 24

ПАВЛОВСКИЙ П.Г. Удаление заусенцев в центробежно-ротационных станках………………………………………………… 25

ПАРФИЕВИЧ А.Н. Методика и средства мониторинга технического состояния многоплатного зубчатого привода…………… 26

ПОНУКАЛИН А.В., ЗВЕРОВИЧКОВ Е.А. Оценка качества рабочего тела для объемной обработки……………………………… 27

167
Логистические издержки лесопромышленных предприятий Республики Беларусь

С.В. Цицило
Научный руководитель С.И. Барановский, д-р экон. наук, проф.
Учреждение образования «Белорусский государственный технологический университет» Минск, Беларусь

В современных условиях хозяйствования необходимо точно учитывать все издержки, связанные с производственно-хозяйственной деятельностью лесопромышленных предприятий. Одной из важнейших групп издержек, которые являются важным резервом для снижения себестоимости готовой продукции, являются логистические издержки. Так по данным «Института логистики и транспорта», «Совета по управлению логистикой США», «Совета по цепям поставок» использование логистических принципов управления предприятием позволяет сократить время производства до 25%, снизить себестоимость производства продукции до 30%, сократить объемы материально-технических запасов от 30 до 70%.

Для простоты учета логистических издержек их можно разделить на макрологистические и микрологистические издержки. Макрологистические издержки – это логистические издержки связанные с движением материальных и информационных потоков между лесопромышленным предприятием и элементами лесопромышленной подсистемы логистической системы (покупатели, поставщики сырья, поставщики логистических услуг). К таким издержкам следуют отнести издержки на снабжение, распределение и издержки на содержание запасов, которые в свою очередь разделены на ряд более мелких издержек.

Микрологистические издержки связаны с выполнением логистических операций внутри лесопромышленного предприятия. К таким издержкам следует отнести складские издержки, издержки на хранение запасов, производственные издержки по организации движения материальных и информационных потоков внутри предприятия и информационные издержки. Наибольшую долю в этих издержках занимает оплата зароботной платы и начислений на нее, амортизация основного оборудования.

Таким образом, можно сказать о том, что учет логистических издержек необходимо для выявления резервов снижения себестоимости готовой продукции, выпускаемой лесопромышленным предприятием и, соответственно, повышения конкурентоспособности лесопромышленного предприятия. А разделиение издержек на микро- и макрологистические позволит определить, где предприятию необходимо использовать собственные силы или совместные усилия с поставщиками, потребителями и т.д.

Для проведения экспериментальных исследований было изготовлено 18 образцов, объединенных в три серии. Конструкция загружалась постепенно, ступенями, не превышающими 10% от разрушающей нагрузки (разрушающая нагрузка предварительно принимается на основании численного эксперимента), до условного уровня эксплуатации, равного 0,8Рраз. После этого величина ступени уменьшалась до 5%. Для определения численного значения пластических деформаций, после каждой ступени приложения нагрузки, делались 5-ти минутные выдержки, а при значении нагрузки 0,8Рраз - выдержка 30 минут. Отчеты по приборам снимали в начале и в конце выдержки.

На поверхность бетона и сварного каркаса наклеивали отдельные тензорезисторы с базой 20 мм. Схемы установки тензорезисторов на стальном сварном каркасе и на бетоне приведены на рис. 1 и 2. Из-за необходимости фиксации нормальных деформаций в сечении с разным положением гофра (рис. 4, 5) для базов серии БК-1 и БК-3 в зоне чистого изгиба устанавливались дополнительные горизонтальные тензорезисторы. В нормальном сечении базов серии БК-2 деформации фиксировались индикаторами часового типа с ценой деления 0,001 мм.

Рис. 4. Схема расположения тензорезисторов на стальном, сварном каркасе опытных образцов
Качественные преобразования экономики невозможны без повышения конкурентоспособности продукции и предприятий. Научные предприятия должны научиться продавать свои товары, увеличивать их, на крепкой основе, удерживать за собой доли рынка, достаточные для расширения и совершенствования производства. Без этого невозможно повышение уровня и качества жизни населения.

Последствия мирового финансового кризиса, докатившегося до нас осенью 2008 года, в настоящее время ощущаются во всех сферах экономики. Произошло резкое снижение темпов роста ВВП, редкость в промышленности (особенно значительное сокращение объёмов производства в машиностроении и металлургии), падение экспортных товарах и услуг, усиление конкуренции на рынке инвестиций, определенные трудности испытывает финансово-кредитная система. Вот не полный перечень проблем, с которыми пришлось столкнуться белорусской экономике.

Промышленный комплекс является наиболее конкурентоспособным сектором экономики. Основными сдерживающими факторами повышения конкурентоспособности промышленности Республики Беларусь можно назвать следующие: низкий уровень адаптации к рыночным условиям; высокий уровень морального и физического износа оборудования; низкий уровень менеджмента, маркетинга, организации производства и труда.

Помимо этого, негативными факторами внешней среды для белорусских предприятий являются усиление позиций зарубежных конкурентов, высокий уровень налоговой нагрузки, государственное регулирование цен, недостаточный объем инвестиций в промышленность. Таким образом, проводимая промышленная политика недостаточно эффективна, что связано с несоответствием её методов изменявшемуся характеру экономики.

Промышленная политика государства должна способствовать осуществлению технологической модернизации производства, снижению издержек, повышению качества сырья и конкурентоспособности продукции, созданию условий внедрения прогрессивного оборудования и инноваций.
Если ранее служба персонала была представлена отделом кадров, основными функциями которого являлись учет персонала, контроль за соблюдением трудового законодательства и документооборот, то в настоящее время кадровая работа направлена на формирование способностного и эффективно функционирующего персонала. Для достижения этой цели могут использоваться различные методы и процедуры, специфические для различных этапов развития организации. Оценочные мероприятия должны проводиться на таком качественном уровне, чтобы ни в коем случае не нести в себе некую угрозу для коллектива, способную дезорганизовать работать, а войти в общую систему кадровой работы в организации таким образом, чтобы способствовать ее развитию и совершенствованию. Примером оценочной технологии, удовлетворяющей указанным требованиям, может служить технология "Центр оценки" (Assessment Center).

Суть метода заключается в том, чтобы создать упражнения, моделирующие ключевые моменты деятельности оцениваемого, в которых проявлялись бы имеющиеся у него профессионально значимые качества. Степень их выраженности оценивается подготовленными специалистами, и на основании этой оценки делаются заключения о степени пригодности аттестуемого к данной работе, продвижению по службе, необходимости индивидуальны психологических консультаций. Каждый участник оценивается несколькими специалистами и специально подготовленными наблюдателями, каждый наблюдатель оценивает нескольких участников, что позволяет минимизировать возможную необъективность и использовать перекрестные оценки для повышения достоверности результатов.

Преимущества использования центра оценки для персонала: равные возможности для демонстрации своего потенциала к продвижению, независимо от нынешних рабочих обязанностей и результатов; возможность выразить свои интересы, цели и ожидания в отношении карьеры; получение адекватной профессиональной самооценки (сотрудник хочет знать мнение о себе и иметь объективную оценку); возможность принимать решения о своих личных планах в области карьеры и жизненных целях на основе лучшей и более обширной информации.

Актуальной проблемой для реализации высокоскоростной обработки (ВСО) прецизионных изделий машиностроения является стабилизация тепловых деформаций. Важнейшим узлом для достижения требуемой точности с точки зрения тепловых деформаций является станок. Станки высокоскоростных станков выполняются термосимметричными и чрезвычайно жесткими. Уменьшение чувствительности станка к изменению тепловых полей достигается изготовлением деталей станка из материалов с малым коэффициентом линейного расширения, рациональной компоновкой станочной системы, изоляцией источников тепловыделения. Компьютерный расчёт механических нагрузок и тепловых потоков позволяет с достаточной точностью вычислить величины механических и тепловых деформаций, а также выбрать действенные методы их компенсации.

Критическим компонентом высокоскоростных шпиндельных узлов является система подшипниковых опор. Последним достижением в технологии изготовления подшипников является использование керамики (нитрида кремния) для изготовления тел качения и колец. Расширяется также применение бесконтактных подшипников: воздушных гидравлических, магнитных.

Важным конструктивным фактором, влияющим на температурные деформации, является метод смазывания подшипников качения. Для ВСО альтернативными способами являются: масляный туман и впрыск под давлением масляной струи. Находят применение комбинированные методы смаэки шпиндельных подшипников с помощью сжатого воздуха и конденсатной смаэки.

Производство с высокой степенью надежности процесса механической обработки невозможно без систем диагностирования и контроля станков. Аналоговые сигналы датчиков используются устройством ЧПУ для расчета компенсации деформаций станка, а специальное программное обеспечение позволяет оптимизировать режимы ВСО.
Маслоемкость поверхности - важный эксплуатационный параметр, который необходимо учитывать при работе трещин поверхностей. Ее величина характеризуется отношением объема смазывающей жидкости, удерживаемой на поверхности детали к площади этой поверхности.

На практике возникает необходимость определения маслоемкости по реальному профилю поверхности. Разработанная математическая модель позволяет оценивать маслоемкость поверхности, характеризуемой реальным профилем.

В качестве входных данных использовались профилограммы реальных поверхностей. Из анализа профилей поверхностей следует, что объем смазки, удерживаемой поверхностью, пропорционален площади, ограниченной впадинами профиля и поверхностью смазывающей жидкости в этих впадинах.

Исследования показывают, что для реальных микронеровностей, вне зависимости от глубины и их раскрытия, впадины оказываются заполненными маслом до верха. Таким образом, при расчете маслоемкости нужно учитывать только соотношение высот соседних вершин микронеровностей. Также на основе теоретических выводов показано, что при увеличении относительной опорной длины профиля маслоемкость поверхности уменьшается.

Из полученных в методике соотношений следует, что маслоемкость поверхности выше у деталей:
- с более высокой шероховатостью;
- с более резким спадом кривой относительной опорной длины профиля (tп) в средней части.

Описанная методика определения маслоемкости поверхности была проверена на основе математического моделирования профилей реальных поверхностей и подтверждена правильность представленных в ней подходов. Ее использование позволяет, как получать эмпирические оценки маслоемкости поверхности, так и вести их сравнение по величине этого важного эксплуатационного показателя. Другим достоинством описанной методики является возможность ее использования для прогнозирования величины маслоемкости поверхности на этапе проектирования технологического процесса обработки.
УДК 338
ОСНОВНЫЕ ПАРАМЕТРЫ РАЗВИТИЯ ИННОВАЦИОННОЙ ДЕЯТЕЛЬНОСТИ В РЕСПУБЛИКЕ БЕЛАРУСЬ
Д.М. СТЕПАЕНКО, канд. экон. наук
Научный консультант В.Г. ЧАПЫГИН, д-р экон. наук, проф.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Государственное образовательное учреждение
высшего профессионального образования
«КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь; Калининград, Россия

По данным статистической отчетности, в качестве инновационно активных в промышленности Беларуси в 2008 году было определено 371 предприятие, или 15,9 % от их общего количества.

Наибольшее количество инновационно активных предприятий республики сосредоточено в городе Минске (20,5 % от общего числа инновационно активных субъектов хозяйствования страны в 2008 году). Наиболее масштабы новаторской активности присущи для Гродненской области, доля числа инновационно активных предприятий которой, в общем количестве таких субъектов хозяйствования по республике, в целом, составляла в 2008 году 9,2 %.

В 2008 году доля предприятий, осуществлявших продуктовые инновации, в общем числе субъектов хозяйствования промышленности республики составила 8,5 %, а аналогичная по смыслу доля применительно к предприятиям, осуществлявшим процессные инновации – 10,2 %.

Наибольшую инновационную активность в республике проявляют предприятия машиностроения и металлообработки. Доля инновационно активных субъектов хозяйствования данной отрасли в общем количестве таких предприятий по стране в 2003 году составляла 45,9 %, в 2004 году – 46,6 %, в 2005 году – 45 %, в 2006 году – 43,9 %, а в 2007 году – 47,4 %.

Главным источником финансирования инноваций в республике являются на сегодняшний день собственные средства предприятий, доля которых в общем объеме финансирования составила в 2008 году 61,27 %.

Объем отгруженной белорусскими предприятиями инновационной продукции в 2008 году был равен 13410197 млн белорусских рублей (около 6200 млн долл. США), что на 28,4 % больше, чем в 2007 году. При этом 34,2 % инновационной продукции, отгруженной в указанном году, составила продукция, вновь внедренная или подвергавшаяся значительным технologическим изменениям в течение последних трех лет; 39,2 % – продукция, подвергавшаяся усовершенствованию в течение последних трех лет; 26,6 % – прочая инновационная продукция.

Экспорт инновационной продукции предприятиями Беларуси составил в 2008 году 7928211 млн белорусских рублей (около 3650 млн долл. США), увеличившись по отношению к уровню 2007 года на 3,9 %.

УДК 621.926
ИССЛЕДОВАНИЕ ПРОЦЕССА КРИОГЕННОГО ИЗМЕЛЬЧЕНИЯ ПОЛИМЕРНЫХ МАТЕРИАЛОВ
К.А. БОНИДАРЕВ
Научный руководитель М.А. КИРКОР, канд. техн. наук, доц.
Учреждение образования
«МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОДОВОЛЬСТВИЯ»
Могилев, Беларусь

Использование защитных износостойких покрытий из порошковых полимерных материалов на быстроизнашивающихся деталях позволяет снизить затраты материальных, энергетических и трудовых ресурсов для обеспечения надежной эксплуатации машин и механизмов, а также сократить простой оборудования и увеличить выпуск продукции с улучшением её качества.

Особенность переработки синтетических полимерных материалов в порошки состоит в том, что исходное сырье, как правило, находится в разрезанном или гранулированном состоянии. Полимеры при нормальной температуре обладают высокой эластичностью и сильными межмолекулярными связями. Поэтому механическое деформирование полимеров при этих температурах не приводит к хрупкому разрушению, как у низкомолекулярных кристаллов, а выдерживает значительные удлинения (до 1000%) до разрушения.

Традиционное измельчение полимерных материалов осуществляют при охлаждении их ниже температуры стеклования, что достигается проведением процесса в среде жидкого азота. Для исследования процесса криогенного измельчения полимерных материалов была разработана установка для получения тонкодисперсных полимерных порошков прозводительностью 100 кг/ч по готовому продукту.

Экспериментальные исследования проводились при частоте вращения ротора измельчителя равной 4000 об/мин, его диамetre 320 мм, зазоре между дисками 1,5 мм и номинальной мощностью 11 кВт. В результате было установлено, что расход азота составляет 3 килограмма на 1 килограмм готового порошка, средний размер частиц полученного порошка – 200 мкм, максимальный размер частиц – 400 мкм, а степень измельчения равна 3. Данные параметры удовлетворяют требованиям к порошкам, применяемым при газопламенном нанесении полимерных покрытий.

Установка спроектирована и изготовлена по заказу ОАО «Белкард» (г. Гродно) и проходит опытно-промышленные испытания на линии производства и нанесения полимерных покрытий на карданные вали.
УДК 621.01:004:347.78
ИСПОЛЬЗОВАНИЕ МЕТОДОВ МЕТРИЧЕСКОГО РАСПОЗНАВАНИЯ ДЛЯ ОЦЕНКИ КАЧЕСТВА СБОРКИ ЧЕРВЯЧНЫХ ПЕРЕДАЧ
Д.А. ЗАБЕЛИН
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

В условиях РУП «Могилевлифтмаш» были проведены испытания партии червячных редукторов, входящих в механизм подъема кабины лифта. Для выявления передач с неудовлетворительным качеством сборки был использован метод метрического распознавания. При этом применялось распознавание принадлежности червячной передачи заранее установленному классу. В данном случае, было определено два класса состояний механических передач. К первому классу были отнесены передачи с уровнем шума превышающим допустимый уровень, ко второму классу – передачи, у которых шум был в пределах нормы.

Процесс обучения системы заключался в предоставление ей записей амплитудно-частотных спектров червячных передач, относящихся к установленным двум классам. По этим данным были определены эталоны каждого класса путем усреднения всех амплитудно-частотных составляющих.

На этапе обучения системы был проведен поиск наиболее информативного набора гармонических составляющих в пределах 1-512. Было установлено, что не все гармонические составляющие амплитудно-частотного спектра являются носителями информации о качестве сборки червячной передачи. Из амплитудно-частотного спектра были исключены низкочастотные составляющие (1...5), которые могут быть вызваны неосознанностью установки датчика углового положения. Из остальных амплитудно-частотных составляющих наиболее информативными оказались гармоники близкие к зубовой составляющей и составляющим кратным зубовой. Решение о принадлежности передачи к какому-либо из классов принималось на основе сравнения расстояний между данной передачей и эталоном установленных классов в многомерном пространстве признаков. В качестве коэффициента такого пространства признаков использовались амплитуды гармонических составляющих кинематической погрешности червячных передач.

Использованный метод метрического распознавания по эталонам показал достоверность разбраковки равную 80-85 %. При этом качество распознавания может быть значительно повышено при увеличении количества объектов, предъявляемых для обучения системы.

УДК 339.138
ЭТАПЫ И МЕТОДЫ ОПТИМИЗАЦИИ АССОРТИМЕНТА
В.В. СТАРОВОЙТОВА, Л.А. КЛИМОВА
Научный руководитель Н.С. ЖЕЛТОК, канд. экон. наук, доц.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

В процессе оптимизации ассортимента можно выделить три этапа.
1 этап. Анализ динамики рынка и структуры спроса. Подразделение, ответственное за управление ассортиментом (как правило, это маркетинговая служба), с установленной периодичностью инициирует процесс оптимизации. Маркетинговое подразделение анализирует динамику продаж по товарным группам (товарам), оценивает перспективы изменения спроса и конкуренции в сегментах. На основании полученной информации специалисты по маркетингу готовят варианты решений по изменению структуры ассортимента, направленные на повышение удовлетворенности потребителей, укрепление конкурентной позиции компании и увеличение доли рынка.

2 этап. Финансовый анализ разработанных предложений. Планово-экономическая служба анализирует финансовые показатели по товарным группам или отдельным товарам и выносит свои заключения об изменении структуры ассортимента.

3 этап. Утверждение окончательного варианта структуры ассортимента. Рабочая группа, в которую входят специалисты маркетингового, экономического и других подразделений (производство, закупка, логистика), разрабатывает и согласовывает окончательный вариант решения по оптимизации ассортимента продукции компании.

При оптимизации структуры ассортимента необходимо учитывать множество факторов. Нужно найти решение, которое будет лучшим с точки зрения увеличения прибыли, доступности ресурсов, роста продаж и за- воевания новых рынков. Для этого можно использовать различные методы. Наиболее распространенный из них - метод экспертных оценок. Формирование оптимальной структуры ассортимента в рамках этого метода сводится к определению набора показателей, которые эксперты оценивают по десятибалльной шкале.

Еще один способ определения оптимальной структуры ассортимента - использование математических методов, в частности метода линейного программирования. Этот метод с успехом применяется на Западе, однако его использование требует выполнения ряда условий: внедрение на предприятии системы бюджетирования, неизменной производственной программы месяца, высокого уровня затрат на производственные мощности, качественных прогнозов поведения рынка и поставщиков.
АЛГОРИТМ ФОРМИРОВАНИЯ ТОВАРНОГО АССОРТИМЕНТА

В.В. СТАРОВОЙТОВА, Л.А. КЛИМОВА
Научный руководитель Н.С. ЖЕЛТОК, канд. экон. наук, доц.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилёв, Беларусь

Формирование товарного ассортимента для торговых предприятий осуществляется по следующему алгоритму.

Первый этап - ABC-анализ — метод, позволяющий классифицировать ресурсы фирмы по степени их важности. В его основе лежит принцип Па- рето: 20 % всех товаров дают 80 % оборота. Необходимо жестко контролировать наличие в ассортименте товарных позиций класса А. По отношению к товарным позициям класса В контроль может быть текущим, а по отношению к позициям класса С — периодическим.

Второй этап - учит времени присутствия товара на рынке - необходим, так как спрос у потребителей на товары-новинки и товары, утверждавшиеся на рынке, различен. Поэтому нужно дать товару время (от трех месяцев) для узнаваемости его потребителем, чтобы далее принимать эффективные решения, основываясь на участии товара в товарообороте и доходе.

Третий этап - анализ представления данной продукции у конкурентов - особенно важен в условиях современной конкурентной борьбы. При более широком ассортименте у конкурентов, потребители могут отдать предпочтение им в будущем. Следовательно, важно отслеживать пользующуюся спросом продукцию, присутствующую в ассортименте конкуренту-рующего предприятия.

Четвертый этап - рассмотрение наличия товаров субститутов — это важный этап в формировании ассортиментной матрицы, так как при их наличии как в собственной ассортиментной матрице, так и в матрице конкурентов не окажет к вытеснению им товаров со схожими свойствами (например, продолжающихся по более дорогой цене). Таким образом, возникает риск «залеживания» продукции при наличии товаров аналогов. При анализе способов использования товаров рассматривается возможность использования одним товаром ресурсов другого, то есть рассматриваются потенциальная прибыльность альтернативного товара.

Пятый этап - рассмотрение ассортимента с точки зрения присутствия в нем товаров разного диапазона цен. Становится важным удерживать потребителей всех классов, соответствующих их интересам и требованиям. Таким образом, в ассортименте должна присутствовать продукция разного диапазона цен, как «народных» товаров, товаров средней ценовой категории, так и престижных товаров.

МЕТОДИЗАЦИЯ ПРОЦЕССА НИЗКОТЕМПЕРАТУРНОГО РАЗРУШЕНИЯ ОБЛОЯ НА ДЕТАЛЯХ ИЗ ПОЛИМЕРНЫХ МАТЕРИАЛОВ

Е.А. ЗВЕРОВЦЫКОВ
Научный руководитель В.О. СОКОЛОВ, д-р техн.наук, проф.
Государственное образовательное учреждение высшего профессионального образования
«ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
Пенза, Россия

Обработка деталей из полимерных материалов после формовки широко распространена в промышленности. Эффективным способом удаления штамповочного облоя является объемная обработка в условиях низких температур. Кинематика и динамика взаимодействия деталей с рабочей средой зависит от способа обработки. Технологические режимы для извественных технологических способов определяются экспериментально на опытной партии, что связано с затратами на технологическую подготовку производства. Имеется потребность в моделировании процесса взаимодействия частиц загрузки для прогнозирования результатов удаления облоя и выбора метода обработки.

Моделирование взаимодействия проводилось в среде MSC Nastran для резиновых колец диаметром 10 мм и сечением 2,5 мм из бутадиен-нитрильной резины. В качестве рабочего тела принят стальной шар диаметром 5 мм.

Для моделирования в условиях низких температур сделан ряд допущений и введены граничные условия. Свойства материала изотропны по сечению изделия. Для моделирования использовался твердотельный объект типа solid. Форма элементов для объема кольца — параболический тетраздр, для моделирования участка облоя — линейный клин.

Рассматривались несколько схем взаимодействия рабочего тела и обрабатываемого объекта. Как наихудший вариант для сохранения целостности самого изделия рассматривалась схема прямого взаимодействия. Имитировалось закрепление в массе загрузки по наружной поверхности кольца. Способ приложения нагрузки определялся объемной поверхностью контакта при упруго-пластической деформации. Экспериментально определен хрупкий характер разрушения при температуре ниже – 80 °С, соответственно, использован тип нагрузки по кривой. Нагрузка задавалась как перемещение-распределенная вдоль указанной линии. Характер распределения аппроксимировал линейным законом, который учитывался безразмерным коэффициентом. Нагрузка, распределенная по длине контакта определялась усилием, которое оказывает единичный шарик рабочей среды при контакте с облоем. Принятые допущения позволят приблизить к статическому анализу процессы, используя линейный характер нагрузки.
УДК 621.9
ПАРАМЕТРИЧЕСКАЯ ОПТИМИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ
ПЕРЕХОДОВ ВЫПОЛНЯЕМЫХ НА ТОКАРНОМ СТАНКЕ С ЧПУ

А.В. КАЗАКОВ
Научный руководитель А.А. ЖОЛОБОВ, канд. техн. наук, проф.
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилёв, Беларусь

В настоящее время известно большое количество различных методов оптимизации режимов резания на металлорежущих станках. В расчетах режимов резания для станка с ЧПУ используется система ограничений при однокомбинированных обработке с бессступенчатым регулированием частоты вращения шпинделя, скорости подач и известном рациональном периоде стойкости инструмента.

Из теории линейного математического программирования известно, что если система линейных ограничений совместна, то оптимальное решение находится в одной из вершин выпуклого многоугольника, образованного пересечением линий соответствующих уравнений системы ограничений. Однако постоянный коэффициент C и показатели степени x, y, m, в эмпирической формуле для определения скорости резания при течении зависят от подачи. Из этого следует, что область поиска оптимального решения разделена на три зоны, в каждой из которых любая прямая из системы ограничений изменяет свой угол наклона. Например, рассмотрим прямую ограничивающую максимальную частоту вращения шпинделя: y, x1, + x1' = h, - b, Угол между этой прямой и осью X' определяется как arctan(1 - y, / x1) и составляет соответственно - 53°, - 67° и - 72°. Таким образом, выпуклый, образованный системой ограничений не является выпуклым.

В общем случае решение этой задачи состоит из следующих шагов. Найти координаты вершин области допустимых решений при ограничении максимальной подачи Smax = 0.3. Выявить вершину q', в которой целевая функция имеет наибольшее значение. Найти координаты вершин области допустимых решений при ограничении минимальной подачи Smin = 0.31 и максимальной Smax = 0.71. Выявить вершину q" в которой целевая функция имеет наибольшее значение. Найти координаты вершин области допустимых при ограничении минимальной подачи Smin = 0.71. Выявить вершину q" в которой целевая функция имеет наибольшее значение. Определить S, t, n и соответствующие максимальному из q', q" и q" в.

Данный метод можно применить при разработке систем направленных на повышение производительности станков с ЧПУ.

УДК 330.567.4: 008
РОЛЬ КУЛЬТУРЫ КАК ОБЩЕСТВЕННОГО БЛАГА В ПРОЦЕССЕ
ФОРМИРОВАНИЯ ЧЕЛОВЕЧЕСКОГО КАПИТАЛА

Т.Г. СВИРИДОВА
Научный руководитель А.В. БОЯРД, д-р экон. наук, проф.
Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»
Минск, Беларусь

Согласно взглядам современных экономистов человеческий капитал представляет собой «накопленным населением запас физического и нравственного здоровья, общей культуры и профессиональной компетентности, творческой, предпринимательской и гражданской активности, реализуемый в разнообразных областях деятельности и в сфере потребления». Отсюда следует, что воспроизводство человеческого капитала происходит во всех сферах общественно полезной деятельности (экономической, политической, социальной и др.) и охватывает не только рабочее, но и свободное время. Поэтому от того как граждане проводят свое свободное время (т.е. досуг) зависит возможность расширения человеческого капитала страны.

Само свободное время представляет собой особую форму деятельнос- ти людей, специфический способ их самореализации. Одним из способов проведения свободного времени является культурная деятельность, включающая дополнительное образование, чтение, посещение кино, театров, дискотек, просмотр телевизионных передач, участие в художественном, техническом и ином творчестве, коллекционирование, туризм, спорт и т.д. По мере развития общества ценность культуры возрастает.

Коллективный и некоммерческий характер потребления услуг культурной сферы, а также значительные долгосрочные положительные внешние эффекты позволяют отнести их к смешанным общественным благам, носящим социально-значимый характер.

Эффективность предоставления данных общественных благ определя- ется рядом факторов: наличием и возможностью выбора вида культурно- досуговой деятельности; степенью свободы такого выбора, предоставляемого обществом; доступностью культурных ценостей и услуг, повышенной их уровня и качества; укреплением материально-технической базы действующих учреждений культуры. Реализация данных условий и является одной из задач государства в обеспечении населения общественными бла- гами.
ОБРАЗОВАНИЕ ВЗРОСЛЫХ – ИСТОРИЧЕСКИЕ, СОВРЕМЕННЫЕ, ОРГАНИЗАЦИОННЫЕ И ИНДИВИДУАЛЬНЫЕ АСПЕКТЫ

К.С. САМАРЦЕВ
Научный руководитель С.Б. САМАРЦЕВ, канд. техн. наук, доц.
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Образование взрослых как неотъемлемая часть непрерывного образования может решительно содействовать экономическому и культурному развитию, социальному прогрессу и развитию систем образования, а приобретенный опыт в этой области должен постоянно содействовать выработке новых методов обучения и реформе образования в целом.

В последние годы наблюдается быстрое увеличение количества международных исследовательских групп и институтов - чаще как результат материальной поддержки заинтересованных лиц, особенно из ЕС. Такие группы совместно ведут исследования и разработки в различных областях науки об образовании взрослых.

Исследования фокусируются на различиях, сходствах, причинах их возникновения и последствиях в разных странах, раскрывающих теоретические вопросы, принципы, методы и другие аспекты, имеющие отношение к сравнению в международном контексте образования взрослых, а также отражающих опыт, достигнутый в международных исследованиях, проблемы и препятствия на пути к более равному образованию.

При этом исключительно важно оценить понимание этой области наук в соответствии конкретном государстве, проанализировать сходства и различия в образовании двух или более стран и сделать попытку раскрыть природу происхождения таких различий в фокусе каждой из этих стран.

Зарубежные исследователи образования взрослых объединены в сообщество ISCAE (мировое общество за сравнительное образование взрослых). Проявляются различные международные мероприятия, например, постоянная конференция ESSVA по истории образования взрослых.

Проблематика основных научных работ включает в себя ряд таких непростых аспектов: какое место исторические персоналии занимают в процесс образования взрослых; кто является носителями лидерами, экспертами и компетентными исполнителями; какова профессиональная роль педагога для взрослых и каковы знания, способности, отношение к делу, ожидаемые от педагогов в различные времена и культуры; существует ли разделение педагогов на разные категории; как повышает квалификацию преподаватель в процессе педагогической деятельности; каковы доступные схемы обучения преподавателей и как производится их сертификация.

ЭКОЛОГИЧНОСТЬ ТЕХНОЛОГИИ ПОВЫШЕНИЯ ПРОИЗВОДСТВЕННОГО РЕСУРСА ДВУХКАРБИДНОГО ТВЕРДОСПЛАВНОГО ИНСТРУМЕНТА

А.Ф. КОРОТКЕВИЧ
Научный руководитель Б.И. ХОДЫРЕВ, д-р техн. наук, проф.
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

В настоящий момент, при всеобъемлющем снижении потребительской активности, на фоне крайне обострившейся конкуренции среди производителей важнейшей задачей является создание новых ресурсосберегающих технологий. При этом требования по безопасности и экологичности вновь разрабатываемых технологий являются приоритетными при рассмотрении возможности внедрения технологии в производство.

Наиболее перспективными как в научном, так и в прикладном плане являются технологии основанные на воздействии потоков различных энергий на поверхность материалов и сплавов. Одной из таких технологий является технология модификации структуры поверхностного слоя двухкарбидных твердосплавных пластин методом воздействия потоком низкозергетических частиц в вакууме. Для реализации данной технологии используется модернизированная вакуумная установка на базе установок «Булат». При эксплуатации вакуумных установок существуют опасности, связанные с применением высоких напряжений, а также образующихся газообразных веществ, которые могут нести опасность для жизни и здоровья рабочего.

В качестве мероприятия по защите оператора от поражения электрическим током применением заземления нетоковедущих частей оборудования, которые могут оказать под напряжением (ГОСТ 12.1.030 – 81). Еще одним опасным фактором для здоровья оператора является заграждение воздушного пространства непосредственно в рабочей камере и, следовательно, воздуха рабочей зоны при открытии камеры для выгрузки партии модифицированных твердосплавных пластин. Анализ воздушного состава рабочей зоны производился при помощи газоанализатора testo 350 M/XL. Результаты измерений показали, что при реализации данной технологии параметры воздушного пространства находятся в норме согласно требованиям ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны».

Исходя из вышеизложенного, можно сделать вывод о достаточной экологичности предложенной технологии.
УДК 621.923
ОБЕСПЕЧЕНИЕ КАЧЕСТВА ПОВЕРХНОСТНОГО СЛОЯ
ПРИ ПРОФИЛЬНОМ ГЛУБИНИНОМ ШЛИФОВАНИИ
Ю.Н. КОШЕЛЕВА
Научный руководитель В.О. СОКОЛОВ, д-р техн. наук, проф.
Государственное образовательное учреждение
высшего профессионального образования
«ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
Пенза, Россия

Профильное глубинное шлифование является одним из высокопроизводительных методов обработки изделий из труднообрабатываемых материалов, таких как твердые сплавы.

Основной причиной появления трещин, сколов, короблений деталей при их изготовлении является наличие внутренних напряжений. В процессе шлифования в твердых сплавах возникают температурные напряжения, как за счет различия коэффициентов линейного расширения кобальта и карбидов, так и за счет перепада температур по объему детали в результате неравномерного локального нагрева обрабатываемой поверхности.

При шлифовании, в результате действия шлифовщиков зерен на поверхности слоя материала, в зоне контакта шлифовального круга с изделием возникают высокие температуры, которые оказывают существенное воздействие на качество поверхностного слоя обрабатываемого изделия. При глубинном шлифовании, когда глубина шлифования может достигать нескольких миллиметров, процесс диспергирования материала сопровождается более интенсивным тепловыделением, чем при многоходовой обработке.

Приемущества температуры в зоне обработки свыше 500 °С приводит к появлению микротрещин на поверхности обрабатываемого материала, поэтому изучение температурного процесса является важной задачей, позволяющей выявить факторы, влияющие на температурный режим шлифования.

При профильном шлифовании изучение теплофизических процессов затрудняется в связи со спецификой работы инструмента. Рабочая поверхность круга имеет сложный профиль, вследствие чего на различных участках профиля обрабатываемого изделия глубина шлифования может существенно отличаться, что приводит к неравномерному распределению температуры по профилю.

УДК 338.45
ПРОИЗВОДСТВО И РЕАЛИЗАЦИЯ ПРОДУКЦИИ ПРЕДПРИЯТИЯ
В УСЛОВИЯХ МИРОВОГО ФИНАНСОВО-ЭКОНОМИЧЕСКОГО КРИЗИСА
А.В. САВЦЫК
Научный руководитель Т.Г. НЕЧАЕВА, канд. экон. наук, доц.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Успех предприятий в современных условиях зависит от грамотного и профессионального процесса планирования производства и реализации продукции.

План производства и сбыта продукции — основной раздел бизнес-плана предприятия. Он определяет главные задачи, стоящие перед промышленным предприятием в планируемом периоде. Исходными моментами для разработки плана производства и сбыта продукции являются: перспективный план развития предприятия; мероприятия по повышению эффективности производства и наращиванию производственных мощностей; договоры о поставках продукции, данные от предприятий-поставщиков и сведения о спросе на нее; данные об обеспечении предприятия сырьем и исходными материалами; сведения о наличии нереализованной продукции на начало и конец планируемого периода.

Самая актуальная проблема сегодняшнего дня — это развязившийся в 2008 году мировой финансовый кризис, его воздействие и негативные последствия, поиск путей выхода из складывающейся ситуации.

На сегодняшний день существует значительное количество предприятий, производственная программа которых ориентирована не на рыночный спрос, а на ряд субъективных факторов — таких как загруженность мощностей, доступность сырья и материалов, количество производственного персонала и т.д.

В критической ситуации перед предприятием стоят задачи: — восстановить платежеспособность и стабилизировать финансовое положение; — разработать стратегию развития и провести на ее основе реструктуризацию с целью минимизации влияния кризисных явлений в будущем; — увеличить поступление денежных средств от продажи запасов готовой продукции; — проводить строгую и выверенную политику в отношении дебиторской и кредиторской задолженности; — остановить нерентабельные производства.
Точность изготовления и сборки изделия, а, следовательно, его надежность и качество, в значительной степени определяются грамотностью и обоснованностью выбора технологических баз механической обработки деталей. От выбора технологических баз, являющегося одним из наиболее важных этапов проектирования техпроцессов, зависит точность взаимного расположения поверхностей детали, порядок обработки поверхностей, конструкция установочно-зажимных приспособлений. На выбор баз большое влияние оказывает простанова размеров на чертежах деталей, так как конструкторская документация в совокупности с годовой программой выпуска являются основной базовой информацией для проектирования технологического процесса механической обработки. От простановки размеров зависит возможность соблюдения основных принципов базирования — единства и постоянства баз. В рамках данной работы рассматривается разработка формального описания процесса выбора технологических баз с целью создания методики их автоматизированного выбора путем анализа размерных связей чертежа детали.

Чертеж детали предлагается рассматривать как геометрическую структуру, состоящую из множества поверхностей и связей (размеров) между ними. Общепризнано, что наиболее эффективной методикой описания таких структур является моделирование размерных связей чертежа детали посредством теории графов. При необходимости, графы оцениваются на соответствие правильной простановке размеров, и проводится соответствующая корректировка размеров, проставленных на чертеже.

Анализ графов по определенным формальным признакам позволяет в автоматическом режиме произвести выбор чистового и чернового комплектов баз с учетом соблюдения принципов единства и постоянства баз. При этом отсутствует необходимость создания и использования баз данных, в числе которых банк различных поверхностей деталей, конструктивных элементов, типовых схем базирования и установки и т.д.

Таким образом, разработка и создание методики автоматизированного выбора баз является частью основы комплексной автоматизации технологической подготовки и эффективного функционирования производства в целом.
МЕХАНИЗМ ЛОГИЧЕСКОГО ВЫВОДА ИНТЕЛЛЕКТУАЛЬНОЙ СИСТЕМЫ РАСЧЕТА СТАНОЧНЫХ ПРИСПОСОБЛЕНИЙ

М.Н. МИРОНОВ
Научный руководитель В.М. ПАШКЕВИЧ, д-р техн. наук, доц.
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Для расчета стансочных приспособлений была создана интеллектуальная система, базирующаяся на технологиях функциональных семантических сетей.

Планирование вычислений на семантических сетях заключается в синтезе алгоритма решения задачи и формирования программы с учетом исходных (входных параметров) и выходных параметров, а также их ограничений. Управление вычислительным процессом в системе осуществляет механизм логического вывода, состоящий из трех основных модулей:

— модуля, выполняющего семантический анализ строкового выражения, содержащего функциональную зависимость;
— модуля, который производит чтение заданного текста и формирует польскую запись;
— модуля, осуществляющего расчет выражения по сформированной польской записи.

Модуль, осуществляющий семантический анализ строкового выражения, поочередно считывает символы строки и определяет его принадлежность либо к числовой константе, переменной, символу операции или к имени функции.

По результатам семантического анализа строкового выражения, содержащего функциональную зависимость, создается обратная польская запись, представляющая собой массив управляющих команд, выполнение которых обеспечивает требуемую последовательность вычислений.

Польская запись во многих случаях может включать в себя команды только трех типов: выбирать число по заданному имени и занести его в вершину стека; выполнить указанную операцию над одним или двумя числами в вершине стека, удалить операнды из стека и занести на их место результат вычисления; выполнить указанную функцию с аргументами, равными последнему или двум последним числам в вершине стека, удалить аргументы из стека и занести на их место результат вычисления.

При вычислениях по польской записи создается стек, в который заносятся промежуточные результаты вычислений. В итоге выполнения всех команд в стеке остается единственное число, являющееся результатом вычисления заданного выражения.
УДК 338.314
ОПТИМАЛЬНАЯ ЦЕНА – ОСНОВНОЙ РЕЗЕРВ МАКСИМИЗАЦИИ ПРИБЫЛИ
Ю.Ю. Рассеко
Научный руководитель Т.Г. Нечаева, канд. экон. наук, доц.
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Цена является важнейшей составляющей выручки. Прибыль, в свою очередь, напрямую зависит от выручки. Поэтому многие полагают, что при росте уровня цен на товары увеличивается и выручка, следовательно, возрастет и прибыль. Это утверждение верно, если фирма является монополистом и не существует товаров-заменителей. В любой другой ситуации необходимо учитывать спрос на продукцию, который чаще всего является эластичным по цене. Г.е. находится в обратной зависимости от уровня цен. Поэтому установление конечной цены на товар требует особого внимания. Конечная цена должна быть установлена на таком уровне, который обеспечит максимальную прибыль (максимальную разницу между общими доходами и общими затратами). Снижение цены ниже такого уровня может увеличить объем продаж, но это не компенсирует сокращения прибыли на единицу товара. Повышение цены за пределы оптимального уровня увеличивает прибыль на единицу товара, но сокращает объемы продаж, в результате чего происходит уменьшение общей массы прибыли. Таким образом, для получения максимальной прибыли необходимо реализовывать продукцию по оптимальной цене.

С этой целью проводится расчет оптимальной цены, который базируется на анализе производственных расходов и оценке рыночного спроса. Прибыль от реализации определяется как разница между доходом и затратами. Доход, в свою очередь, зависит от цены реализации и объема реализации. Издержки делятся на постоянные и переменные, причем последняя берутся на единицу и увязываются с объемом реализации. Необходимо расписать объем через цену, с этой целью выводится линейная зависимость объема реализации от цене реализации с помощью коэффициентов a и b. Методом наименьших квадратов определяются числовые значения коэффициентов a и b.

При подстановке вышеуказанных зависимостей в единую формулу отражается зависимость прибыли от цены реализации. Принимая полученную зависимость за целевую функцию, экономико-математический метод «Поиск решений», с учетом ограничений, позволяет найти оптимальный уровень цен, обеспечивающий предприятию максимальную прибыль.

УДК 621.9
ВЫБОР СТРУКТУРЫ СТАНОЧНЫХ ПРИСПОСОБЛЕНИЙ НА ОСНОВЕ ИСПОЛЬЗОВАНИЯ ПРОДУКЦИОННЫХ ПРАВИЛ
М.Н. Миронова
Научный руководитель В.М. Пащенко, д-р техн. наук, доц.
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Выбор структуры станочных приспособлений представляет собой задачу, отличающуюся большим и плохо формализуемым разнообразием целей, и требующей использования логической информации. Для решения подобных задач могут быть использованы экспертные системы, знания которых представлены в виде правил и цепочек рассуждений.

В качестве такой системы была использована интеллектуальная система Inter, представляющая собой оболочку гибридного типа, и позволяющую оперировать как с расчетными данными, так и лингвистической информацией в виде набора продукционных правил.

Задача поиска структурных элементов станочных приспособлений в системе разбита на две подзадачи: выбора установочных элементов и выбора силовых механизмов приспособления. Каждой подзадаче соответствует свой набор правил, являющийся собственной базой знаний. Таким образом, пространство поиска структурных элементов станочных приспособлений в системе представлено иерархией пространств, где каждая подзадача решается в своем подпространстве.

Так для выбора установочных элементов с помощью системы Inter была создана база знаний «Базирование», а для выбора жимящих элементов и силовых приводов станочных приспособлений - база знаний «Силовые механизмы».

Выбор установочных элементов станочных приспособлений осуществляется на основе анализа типа базовой поверхности заготовки, ее точности, величины сил резания, точности центрирования заготовки и величины нагрузки на опоры при базировании заготовки по плоскости.

Выбор силовых элементов станочных приспособлений осуществляется на основе анализа силы закрепления заготовки, контакта жимящего устройства с деталью, времени срабатывания силового механизма, колебаний размеров закрепляемой поверхности заготовки в одной партии, а также типа жимющего устройства.

Использование систем, в которых знания представлены в виде продукционных правил, позволяет успешно решать задачи, связанные с находжением оптимальной структуры станочных приспособлений.
УДК 621.9.06-192:620.1
АНАЛИЗ ВЛИЯНИЯ ТЕПЛОВЫХ ДЕФОРМАЦИЙ БАЗОВЫХ ДЕТАЛЕЙ СТАНКА НА ТОЧНОСТЬ ОБРАБОТКИ
Д.В. ОМЕСЬ
Научный руководитель В.П. ГОРБУНОВ, канд. техн. наук, доц.
Учреждение образования
«БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
Брест, Беларусь

Температурные деформации станка приводят не только к линейным отклонениям режущего инструмента относительно заготовки, но и к угловым поворотам его. Линейные отклонения обусловлены средними избыточными температурами, а угловые возникают из-за искажений первоначальной формы деталей станка вследствие неравномерного пространственного температурного поля этих деталей. Линейные отклонения инструмента определяют погрешность размера, тогда как угловые отражаются на точности формы и расположения обработанных поверхностей.

Величина и направление температурных смещений зависят от компоновочной схемы станка, расположения источников тепловыделений относительно базовых деталей, режима и продолжительности обработки. Определяющее влияние на температурные погрешности оказывают деформации базовых деталей (станции, колони, столов, стоек и др.) и шпиндельных барабов. По известному температурному полю можно определить тепловые деформации узлов станка и оценить возможные погрешности обработки, которые являются конечной целью расчета.

Исследования показали возможность учета влияния температурных деформаций базовых деталей и узлов станка на положение его шпинделя. Расчетные зависимости могут быть использованы для различных типов станков с числовым программным управлением. Исследования станка с вертикальной колонной и горизонтальным шпинделем показывают, что возможен различный характер закона изменения температурных деформаций (экспоненциальный, знакопеременный и др.). Причем, вследствие тепловой инерции наибольшая неравномерность имеет место в начальный период работы станка, а также при изменении режима обработки. В качестве диагностического сигнала принималась температура.

Установлен закон изменения температурных деформаций, становится возможным прогнозировать угловые и линейные перемещения шпинделя, время наступления технологического отказа, воздействовать на температурное поле с целью компенсации этих смещений, оптимизировать режимы обработки.

УДК 338
СТРАТЕГИЯ ТОВАРДВИЖЕНИЯ И НЕОБХОДИМОСТЬ ЕЁ РАЗРАБОТКИ
Т.М. ПУЦЕНКОВА
Научный руководитель С.В. МИХОЛАП, канд. техн. наук, доц.
Учреждение образования
«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»
Минск, Беларусь

В условиях перехода Республики Беларусь к рыночной экономике возникает необходимость разработки отечественными предприятиями стратегий деятельности. В частности, белорусские предприятия обращают внимание на необходимость разработки стратегии товардвижения. Подобные стратегии рассматриваются как сфера, связывающая воедино внешнюю и внутреннюю политику предприятия, распределения и сбыта, определяющая отношения с поставщиками и потребителями и ее конкурентные преимущества.

Очевидно, это связано с интеграцией и расширением товарно-денежных отношений, с динамическим увеличением горизонтальных хозяйственных связей между предприятиями и организациями сопряжённых отраслей, возросшими возможностями улучшения их взаимодействия на основе развития хозяйственной самостоятельности, инициативы посреднических структур и транспортных предприятий, совершенствование их экономических отношений.

Проблемы эффективного управления товардвижением на микро- и макроуровне становятся всё более значимыми для всех хозяйствующих экономических субъектов. При разработке стратегий товардвижения необходимо учитывать внутреннюю интеграцию функций и операций, взаимосвязь маркетинга и логистики, структуру функционального цикла товардвижения, что диктует условия сочетания уровней и каналов распределения, обеспечения производства и сбыта. Необходимость изучения структуры товардвижения выдвигает на первый план такие направления, как анализ интегрированных систем распределения и взаимодействия с посредниками в маркетинговых каналах, изучение информационной среды товардвижения, процесс управления товардвижением, выявление наиболее эффективных стратегий зарубежных компаний. В конечном счёте, целью функционирования системы товардвижения в идеале является удовлетворение платежеспособного спроса каждого конкретного потребителя в нужный момент времени, с учётом минимизации затрат. Тогда как степень её достижения зависит не только от многих условий, но прежде всего, связана с рационализацией отношений между предприятиями в сфере товардвижения.
УДК 159.9
АНАЛИЗ АДАПТИВНЫХ БАРЬЕРОВ, ПРЕПЯТСТВУЮЩИХ СОЦИАЛЬНОЙ АДАПТАЦИИ ЛИЧНОСТИ

М.Л. ПАЩУК
Научный руководитель Т.Н. САХАРОВА, канд. псих. наук, доц. Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Учреждение образования «МОСКОВСКИЙ ПЕДАГОГИЧЕСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
Могилев, Беларусь; Москва, Россия

Адаптивные барьеры отражают систему объективных и субъективных, внутренних и внешних факторов, которые тормозят или препятствуют адаптации личности (группы) к разноуровневым адаптивным ситуациям.

Возрастной барьер. С возрастом резко уменьшается генетическая способность пластичного приспособления индивида к среде, хотя в то же время увеличиваются потенциальные адаптивные возможности практических преобразования реальности.

Эмоционально-психологический барьер. Влияние его определяется темпом процессов приспособления в сложных ситуациях, которые выражаются в особенностях темперамента, интеллекта, внимания, памяти, восприятия информации и т.д.

Мировоззренческий барьер. Адаптация к новым реалиям требует переоценки индивидуальной системы ценностей, убеждений, идеалов и мировоззренческих принципов. Если личность отвергает пересмотр убеждений, то в данном случае нерезультативна апелляция к социальным ценностям, выгода и т.д.

Национально-культурный барьер. Лицейность в рамках конкретного социокультурного пространства испытывает на себе воздействие традиций и обычаев. Через социальную среду личности передаются опять, традиции, способы и приемы деятельности, индивидуальных и коллективных адаптивных стратегий и т.д. Социокультурные традиции по-разному преломляются в адаптивных стратегиях людей. Чем более устойчивы традиционные адаптивные стратегии в стабильной социальной ситуации, тем легче будет жизнедеятельность членов данного социума.

Для преодоления адаптивных барьеров требуются разнообразные средства. В процессе приспособления личность обычно сталкивается с комбинацией многих адаптивных барьеров. Здесь важно опираться на такие стратегии, которые осуществляют адаптивные процессы не с помощью прямого воздействия на личность, а благодаря косвенному влиянию всего многообразия структур, присущих гражданскому обществу.

УДК621.924.7
УДАЛЕНИЕ ЗАУСЕНЦЕВ В ЦЕНТРОБЕЖНО-РОТАЦИОННЫХ СТАНКАХ

П.Г. ПАВЛОВСКИЙ
Научный руководитель В.О. СОКОЛОВ, д-р техн. наук, проф. Государственное образовательное учреждение высшего профессионального образования «ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
Пenza, Россия

Известно, что после различных методов формообразования на обрабатываемых поверхностях образуются заусенцы, которые должны быть удалены. Одним из наименее производительных способов удаления заусенцев деталей является объемная центробежно-ротационная обработка (ЦРО), реализуемая на центробежно-ротационных станках.

Анализ литературы посвященной образованию и удалению заусенцев показал, что заусенцы бывают двух видов:
– прямоугольной формы;
– треугольной формы.

Первый вид заусенцев образуются в результате холодной и горячей штамповки, второй вид – при лезвийной обработке деталей.

Используя данные натурных экспериментов и метод конечных элементов реализованный программным пакетом COSMOS Works было установлено, что в процессе ЦРО, вследствие взаимодействия абразивного наполнителя и обрабатываемой детали, могут наблюдать следующие ситуации удаления заусенцев:
1) заусенец в процессе обработки затыкается, вследствие чего не может быть полностью удален. Такая ситуация характерна только для заусенца первого варианта;
2) постепенное сливание материала, что приводит к полному удалению заусенца через определенное время;
3) при обработке заусенец сливается у основания, а затем происходит зачистка оставшейся части.

Первая ситуация является не благоприятной и ее следует избегать, подбирая такие режимы обработки, при которых будет происходить постепенное удаление заусенца.
УДК 620.004.5
МЕТОДИКА И СРЕДСТВА МОНИТОРИНГА ТЕХНИЧЕСКОГО СОСТОЯНИЯ МНОГОВАЛЬНОГО ЗУБЧАТОГО ПРИВОДА
А.Н. ПАРФИЕВИЧ
Научный руководитель А.В. ДРАГАН, канд. техн. наук, доц.
Учреждение образования
«БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
Брест, Беларусь

Зубчатые приводы являются одними из главных составных частей современных машин и оборудования, и, в то же время, самыми активными источниками повышенных вибраций и шума. Это связано с тем, что при работе приводов во взаимодействие вступает большое количество зубчатых колес, передающих от двигателя полезную нагрузку и частоту вращения на различные рабочие органы.

В связи с наличием большого количества источников виброакустической активности одной из основных является задача выявления наиболее неблагоприятных в этом отношении элементов привода, выяснение причин повышенной виброактивности, а также диагностика технического состояния зубчатых колес.

В проведенных исследованиях установлено, что в арсенале специалиста по диагностике в настоящее время имеется достаточно большое количество диагностических признаков различных дефектов в колебательных сигналах. Они обладают разной степенью совершенства и достоверности, однако далеко не всегда существует возможность установления количественной взаимосвязи состояния объекта и параметра сигнала, поскольку разные дефекты приводят к аналогичным эффектам в сигнале.

Кроме того, часто возможности диагностики сдерживаются техническими характеристиками средств контроля, далеко не все диагностические признаки могут быть зафиксированы стандартной аппаратурой.

При проведении экспериментальных работ объектом исследований являлась коробка передач токарного станка СП-401. На основе измерительной информации с использованием компьютерной измерительной системы получен полный набор виброакустических данных, который характеризует работу зубчатых передач и учитывает их техническое состояние, погрешности монтажа и износа, параметрические погрешности и динамические процессы в системе. Для обработки данных разработаны способы автоматизированной обработки колебательных процессов многовальных приводов, позволяющие значительно упростить процесс применения диагностических признаков различных видов дефектов зубчатых колес и элементов многовальных приводов в процессе их эксплуатации без проведения разборки.

УДК 159.9
АДАПТАЦИЯ КАК ПРОЦЕСС ПРИСПОСОБЛЕНИЯ ЛИЧНОСТИ К НОВОЙ СОЦИАЛЬНОЙ СРЕДЕ
М.Л. ПАЩУК
Научный руководитель Т.Н. САХАРОВА, канд. псих. наук, доц.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Учреждение образования
«МОСКОВСКИЙ ПЕДАГОГИЧЕСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
Могилев, Беларусь; Москва, Россия

Социальная адаптация – это постоянный процесс активного приспособления индивида к условиям новой социальной среды, результат этого процесса. Социально-психологическим содержанием адаптации является сближение целей и ценностных ориентаций группы и входящего в нее индивида, усвоение им норм, традиций, групповой культуры, вхождение в ролевую структуру группы. В ходе социально-психологической адаптации осуществляется не только приспособление индивида к новым социальным условиям, но и реализация его потребностей, личность входит в новое социальное окружение, формируются социальные качества общения, поведения и деятельности, принятые в обществе, благодаря чему личность может самоопределиться.

Анализ литературы позволяет выделить несколько основных факторов адаптации: ведущие – учит менталитета, который отражает рациональное, ценностное и подсознательное отношение людей к определенным элементам социальной реальности; временные – стихий, потрясения; объективные – экономические показатели (уровень жизни, прожиточный минимум); субъективные – по уровню самооценки; личные – социально-психологические особенности индивида; региональные – демографический и экономический потенциалы, степень урбанизации, уровень образования населения.

Таким образом, адаптация выступает многообразным, комплексным явлением в жизни социальных субъектов. Адаптационные отношения, в которые субъект вступает с элементами социальной среды, в своей основе дисгармоничные. Характер этих отношений зависит прежде всего от адаптационных ресурсов и средств не только субъекта, но и от степени развития институциональных средств. Для успешной адаптации широких групп и слоев населения важны нормативно-регулятивные средства, которые при помощи различных адаптационных социальных институтов направляют деятельность населения, повышают их адаптационные возможности к современным условиям, что ведет к успешной социализации личности.
Развитие налогового аудита связано с укреплением рыночных отношений, интеграцией Белоруссии в мировую экономику и привлечением иностранного капитала, созданием организаций разных организационно-правовых форм. С целью минимизации налоговых выплат, штрафных санкций, организация целесообразно проводить налоговый аудит, посредством которого выявляются и нейтрализуются ошибки в ведении налогового учета и составлении отчетности, осуществляется сбор и анализ информации о возможностях оптимизации налогообложения и снижения налоговых рисков. В настоящее время отсутствуют единый подход к дефиниции «налоговый аудит», законодательные положения, регламентирующие порядок проведения аудита, организацию деятельности аудиторских организаций и их взаимосвязи с клиентами, не урегулированы вопросы организации эффективной системы контроля качества аудита. Разработка новой концепции налогового аудита в Республике Беларусь, согласующейся с национальными правилами и отвечающей мировым стандартам, является первоочередным направлением развития методологии пообъектного аудита.

Расширение задач налогового аудита предполагает активное привлечение аналитических процедур, позволяющих не только снизить трудоемкость работ, но и существенно повысить интеллектуальную составляющую аудиторской деятельности на основе более глубокого понимания объекта аудита, его особенностей и присущей только ей закономерностей. Методология аналитического подтверждения в налоговом аудите опирается на стандартные методы и процедуры экономического анализа, однако имеет существенные особенности в части формирования информационной базы, алгоритмов расчетов, а также использования специфических показателей. Именно с интеграцией аудита и анализа связано развитие новых концепций аудита, таких как аудит-контроллинг и аудит консалтинг. Однако эффективность их проведения снижается за счет отсутствия стандартизации методики использования в налоговом аудите аналитических процедур и критериев принятия решения по их результатам в соответствии с целями проверки, ограниченном использовании современных информационных технологий.
УДК 621.9.02
ВЛИЯНИЕ СОСТОЯНИЯ РЕЖУЩЕГО ИНСТРУМЕНТА НА ДИНАМИЧЕСКИЕ ПРОЦЕССЫ ПРИ РЕЗАНИИ

В.А. СОКОЛ
Научный руководитель А.В. ДРАГАН, канд. техн. наук, доц.
Учреждение образования «БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
Брест, Беларусь

Изменение технического состояния режущего инструмента в процессе работы влияет на процессы взаимодействия режущего клина с обрабатываемым материалом и, как следствие, приводит к изменению динамических явлений, характеризующихся параметрами колебаний сил резания и виброакустическими процессами. Поэтому последовательное обоснованно могут считаться весьма информативными показателями при проведении мониторинга и диагностики состояния инструмента в процессе его эксплуатации.

Учитывая важность экономических материальных ресурсов в машиностроении и увеличения ресурса режущего инструмента, задача по контролю текущего состояния режущего инструмента является весьма актуальной.

Для углубления знаний в данной области были проведены экспериментальные исследования, в процессе которых фиксировались параметры вибраций и характеристики колебаний сил резания при обработке инструментом, на котором моделировался износ различной величины при различных комбинациях режимов резания. Обработка осуществлялась на токарно-винторезном станке. Измерение сил резания производилось путем тензометрирования, для чего была разработана и изготовлена специальная оснастка с использованием динамометра СУРП-600. Для получения вибрационного сигнала в качестве первичного преобразователя использован акселерометр со встроенной электроникой АР-98. Измерение отмеченных параметров, обработка и управление процессами осуществлялось с использованием оригинального аппаратно-программного комплекса.

Полученные результаты подтверждают основные закономерности изменения динамических процессов при резании, представленные в литературе, а также свидетельствуют о том, что величины износа приводят к весьма ощутимому изменению таких показателей, как размах и СКЗ вибраций и колебаний сил резания. Выявлены диапазоны величины износа и режимов резания, на которых эти изменения проявляются в наибольшей степени, что может использоваться при решении задач мониторинга и диагностики состояния инструментов. Также можно констатировать, что вибрационный сигнал, наряду с высокой информативностью для оценки состояния режущих инструментов, обладает высокой технологичностью его получения, что делает его перспективным для решения отмеченных задач в производственных условиях на реальных объектах.

УДК 614.842.83.(075)
ПОДВЕДЕНИЕ ЭКОНОМИЧЕСКИХ СИСТЕМ ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ

Е.А. МИРОНЧИК, Д.А. ЛИПСКАЯ, И.В. АКУЛОВА
Научный руководитель А.Ф. МИРОНЧИК, канд. техн. наук, доц.
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»

Могилев, Беларусь

В мире в последние годы наблюдается стремительный рост опасных чрезвычайных ситуаций (ЧС) природного и техногенного характера. Определение роста экономического ущерба от ЧС по сравнению с динамикой числа самих катастроф свидетельствует о нарастающих масштабах их пагубного и разрушительного воздействия на главные факторы производства, а значит, и на экономику в целом. Под национальной безопасностью страны понимают степень ее защищенности от возникновения или действия факторов, которые могут нанести существенный ущерб целостности, суверенитету и независимости страны, подорвать потенциал ее свободного развития в соответствии с национальными целями или серьезно ухудшить ее положение в мировом сообществе. К факторам, определяющим степень защищенности страны от угроз относят экономические, социальные, политические, научно-технические, военно-политические, природно-климатические, социально-демографические, ментально-психологические, культурные и информационные. Согласно Концепции национальной безопасности Республики Беларусь одним из приоритетных направлений обеспечения безопасности Республики Беларусь является разработка государственной политики в области предупреждения и ликвидации ЧС с целью защиты населения и территории.

Статистика ЧС в Республике Беларусь свидетельствует не только о количественном их росте, но и о тенденции их увеличения, о вероятности тяжести их последствий, вплоть до катастрофических. При исследовании подверженности экономической системы (ЭС) Республики Беларусь ЧС природного и техногенного характера сделана попытка ее обоснования использованием Концепции уязвимости ЭС ЧС, что помогает понять механизм взаимосвязи ЧС и экономического развития. Она указывает на определяющее влияние типа общественно-политического и социально-экономического устройства страны на генезис и тяжесть хозяйственного ущерба от ЧС. Именно от уязвимости ЭС, обусловливаемой ее состоянием до возникновения ЧС, зависят возможности снижения риска масштабного и необратимого ущерба от нее, а также потенциал и эффективность последующих восстановительных работ.

Основная доля ущерба пришлась на стихийные бедствия, которые принесли серьезный ущерб аграрному комплексу Республики Беларусь (среднегодовая величина потерь последнего десятилетия составляет 3-4 % ВНП Республики Беларусь). Усиливающаяся уязвимость ЭС ЧС приводит к падению уровня безопасности этих систем, поэтому главную роль ныне играют не столько абсолютные масштабы ущерба, сколько тяжесть и глубина воспроизводственных последствий катастроф.
УДК 519.8
ПРОИЗВОДСТВЕННЫЕ ФУНКЦИИ ПРИ ТЕРИТОРИАЛЬНОМ РАЗМЕЩЕНИИ ФАКТОРЫ ПРОИЗВОДСТВА
Е.В. МАРТЫНЕНКО
Научный руководитель Н.И. ХОЛОД, д-р экон. наук, проф.
Государственное учреждение
«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»
Минск, Беларусь

Усиление внимания к региональной политике и осознание необходимости регионализации управления экономикой дают основания предполагать, что проблемы, появляющиеся в регионах Республики Беларусь, станут первоочередными объектами государственного внимания. Региональные различия в распределении ограниченных факторов производства между отдельными регионами оказывают сложное воздействие на экономику страны. При этом ресурсы концентрируются в эффективных регионах, что ведет к повышению совокупного выпуска, но сопровождается чаще всего ростом территориального неравенства. Другие варианты распределения снижают возможные темпы роста. Теоретически можно найти оптимальный баланс между эффективностью и равенством.

Производственная функция является одним из способов оценки и прогнозирования развития экономики. С помощью производственной функции возможно не только выявление резервов экономического роста, но и более глубокое изучение предприятий, отрасли, экономики страны с точки зрения влияния отдельных факторов. Теоретическую основу исследования составляет теория предельной полезности, в рамках которой эффективность использования факторов производства связана с их предельной производительностью. На первом этапе исследования производится построение модели экономики на основе спроса и предложения - производственной функции (Кобба-Дугласа). Далее осуществляется оценка эффективности распределения факторов производства: если участники производства следуют принципам эффективности, факторы производства должны концентрироваться в регионах с более высокой производительностью. На следующем этапе производится распределение факторов производства по регионам на основе построенной модели. Региональные органы власти могут влиять на размещение факторов производства путем предоставления, например, активной инвестиционной, миграционной политики и др.

Полученные результаты позволяют по-новому взглянуть на проблему региональных различий, поскольку они количественно отражают связь территориальной дифференциации с экономическим ростом.

УДК 621.787
КОМБИНИРОВАННАЯ МАГНИТНО-СИЛОВАЯ УПРУГИЯЩАЯ ОБРАБОТКА ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ МАШИН
С.А. СУХОЦКИЙ
Научный руководитель А.М. ДОВГАЛЕВ, канд. техн. наук, доц.
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Большой научно-практический интерес представляет метод отдельно-упрощающей обработки, при котором силовое взаимодействие деформирующих элементов с обрабатываемой поверхностью детали создается за счет энергии вращающегося концентропированного переменного или постоянного магнитного поля, введенного в зону обработки. При этом энергия магнитного поля расходуется на сообщение деформирующим элементам пространственных колебательных движений и создание в поверхностном слое магнитопроводной детали дополнительного напряженного состояния.

Действующее на упрочняемую методом поверхностного пластического деформирования деталь из ферромагнитного материала концентрированное переменное или постоянное магнитное поле низкой напряженности, создаваемое постоянными магнитами из современных магнитных материалов, благоприятно влияет на процесс пластического деформирования: снижает коэффициент трения на границах зерен деформируемого металла; изменяет модуль упругости материала детали; приводит к изменению структуры металла на уровне кристаллической решетки, в том числе к возбуждению атомов и сообщению им дополнительных колебаний; обеспечивает повышение пластичности деформируемого металла и снижение требуемых усилий деформирования.

Комплексное магнитно-силовое воздействие на деформируемый слой металла также способствует протеканию процессов диффузии и вызываемых ею фазовых и структурных преобразований в модифицируемом поверхностном слое упрочняемой детали.

Магнитно-динамическое упрочнение деталей машин, находящихся в концентрированном переменном или постоянном магнитном поле, позволяет сформировать модифицированный поверхностный слой с высокими эксплуатационными характеристиками и обеспечить снижение шероховатости поверхности с Ra 12,5...6,3мкм до Ra 0,25...0,1 мкм, упрочнение поверхностного слоя детали на глубину 0,1 – 2 мм, повышение поверхностной твердости на 30-40 %, упрочнение деталей с исходной твердостью поверхностного слоя до 50-55 HRC.
Литьё метала в одноразовую песчано-глинистую форму – один из самых популярных способов литья. Качество литейной продукции, изготовляемой в сырых песчаных формах, в значительной степени находится под влиянием свойств формовочного материала, таких как прочность на сжатие, уплотненность, твердость и прочность отклик, а именно, формоустойчивость, уплотненность, прочность на сжатие и насыпной плотности, как функции различных независимых переменных, таких как влажность формовочной смеси, процентное содержание бентонита, процентное содержание крахмала в смеси. Для построения зависимостей использовались такие статистические инструменты, как планирование эксперимента и методология поверхности отклика. В качестве зависимых переменных рассматривались формоустойчивость, уплотненность, прочность на сжатие, объемная плотность, а в качестве факторов – содержание бентонита, крахмала и высотность. Далее был построен план эксперимента, в соответствии с которым была проведена серия опытов и собраны экспериментальные данные. Полученные данные были обработаны и представлены математические модели, описывающие взаимосвязь исследуемых свойств с компонентным составом формовочной смеси. Полученные зависимости показали:

- влажность формовочной смеси оказывает в 2 раза большее влияние на ее формоустойчивость, чем содержание активного бентонита;
- влажность формовочной смеси оказывает в 3 раза большее влияние на ее уплотненность, чем содержание активного бентонита;
- содержание активного бентонита оказывает в 2 раза большее влияние на прочность формовочной смеси, чем влажность;
- содержание активного бентонита оказывает в 3 раза меньшее влияние на насыпную плотность формовочной смеси, чем влажность.

Полученные зависимости могут быть непосредственно использованы для формирования корректирующего воздействия в процессе смесеприготовления, так как они отражают связь свойств формовочной смеси с ее компонентами.
Задачей восстановления антикризисной устойчивости – максимально быстро и радикально снизить неэффективные расходы. Несмотря на то, что неплатежеспособность предприятия может быть устранена в течение короткого периода времени за счет продажи убыточных активов, причины, генерирующие неплатежеспособность, могут оставаться неизменными, если не будет восстановлена финансовая устойчивость предприятия. Это позволяет устранить угрозу банкротства не только в коротком, но и в относительно более продолжительном промежутке времени. Главными задачами на данном этапе являются: повышение конкурентоспособности продукции и увеличение оборачиваемости активов. Здесь в первую очередь необходимо обратить внимание на «антикризисный маркетинг». Цель «антикризисного маркетинга» — превратить потребности покупателя в доходы предприятия. Первым шагом является создание службы маркетинга, которая будет заниматься изучением спроса, каналов продаж и методов продвижения продукции, возможностей конкурентов, поиском покупателей продукции и наложением с ними долгосрочных связей. Следующим шагом будет унификация бизнес-процессов в области закупки сырья и материалов, производства и реализации готовой продукции, совершенствование отношений с поставщиками и потребителями. Третьим шагом «антикризисного маркетинга» является создание комплекса интегрированных маркетинговых коммуникаций как внутри предприятия, так и за его пределами.

Таким образом, эффективно используемый «антикризисный маркетинг» позволит повысить финансовую устойчивость предприятия за счет формирования базы покупателей готовой продукции, формирования положительного имиджа предприятия и его товаров, контроля качества выпускаемой продукции, поиска наиболее выгодных поставщиков сырья, материалов и комплектующих.

Курсовой проект по деталям машин предполагает изучение основ расчета и проектирования, начиная с простейших элементов машин общего назначения. При этом значительный объем расчетной части проекта приходится на передачу зацеплением (зубчатые и червячные). Для эвольвентных цилиндрических зубчатых передач внешнего зацепления основные расчетные зависимости для расчета на прочность установлены ГОСТ 21354-87, для конических зубчатых и червячных передач такие стандарты отсутствуют. Однако указанный стандарт, а также другие литературные источники, широко используемые при курсовом проектировании, приводят формулы с разными единицами одинаковых физических величин, в результате чего не соблюдаются правила независимости расчетных формул от системы единиц физических величин. По этой причине профессор М. Н. Иванов считает, что такие расчетные зависимости нецелесообразно использовать в учебном процессе.

По мнению автора, с методической точки зрения при учебном проектировании не следует в расчетных зависимостях на прочность для передач зацеплением выносить из под знака радиуса приведенный модуль упругости Ер материалов контактируемых зубьев шестерни и колеса, на что неоднократно обращал внимание и проф. М. Н. Иванов.

Основываясь на рекомендациях, на кафедре технической эксплуатации автомобилей УО «БрГТУ» была разработана методика упрощенного расчета передач зацеплением и соответствующее программное обеспечение (ПО), которые позволяют студентам более глубоко понять сущность выполняемых расчетов и лучше изучить методику расчета зубчатых и червячных передач, работающих в закрытых корпусах.

Разработанная методика упрощенного расчета и ПО внедрены в учебный процесс и используются студентами машиностроительного факультета БрГТУ при выполнении курсового проекта по дисциплине «Детали машин», что сокращает затраты времени на выполнение проекта и повышает эффективность учебного процесса.
Совместными усилиями Белорусско-Российского университета и представителей Минобороны РБ было разработано устройство, позволяющее имитировать широкий спектр военной техники. Данное устройство участвовало в ходе командно-штабных учений Вооруженных Сил Республики Беларусь и заняло по военной подготовке в воинских частях Северо-Западного оперативно-тактического командования Военно-воздушных сил и войск противовоздушной обороны в период 2006-2009 гг., что подтверждено актом внедрения и поданным патентом на изобретение. Однако ранее предложенные сменные элементы характерных единиц боевой техники не дают полной имитации, так как не совершают характерных для них движений. Например, локатор комплекса С-300 должен совершать вращательное движение, в других элементах имеет место и наличие поступательных и колебательных и иных движений. Для подобной имитации необходимо применение специальных механизмов, которые можно реализовать на базе планетарной прессионной передачи (ППП). ППП выгодно применять в подобного рода устройствах вследствие их компактности и возможностью использования больших передаточных чисел. Также при развертывании имитационной техники необходимо наличие как минимум четырех человек, а при применении лебедки на базе ППП можно использовать два.

К настоящему времени разработана конструкторская документация на сменные элементы для имитационных комплексов с использованием в них ППП, ведутся переговоры по изготовлению и апробации. Для испытания ППП будут использованы специализированный стенд, позволяющий сымитировать работу ППП близкую к реальным условиям.

Полученные в результате нововведений имитационные комплексы могут успешно конкурировать с комплексами иностранного производства, например, Российской Федерации, как по функциональной части, так и по ценовому фактору.
УДК 338
ВЗЫСКАНИЕ ДОЛГОВ КАК НАПРАВЛЕНИЕ ФИНАНСОВОГО ОЗДОРОВЛЕНИЯ ПРЕДПРИЯТИЯ

Д.В. КУРОЧКИН
Научный руководитель В.С. ЖАРИКОВ, канд. техн. наук, доц.
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Ухудшение финансового положения, дефицит оборотных средств, невозможность выплаты долгов – типичные проблемы для многих предприятий, как белорусских, так и российских. В такой ситуации вопрос возрата дебиторской задолженности становится все более острым. Прикрываясь кризисом, недобросовестные партнеры просто отказываются платить по счетам.

На ближайшее предприятиям сотрудники финансового отдела крайне неудовлетворительно осуществляют контроль погашения дебиторской задолженности, а также не своевременно осуществляется подача судебного иска для взыскания суммы основного долга, пени и процентов за пользование чужими деньгами средствами. Так за 2008 г. вынесены решения в пользу ОАО «Могилевский завод «Электродвигатель», по иску предъявленным данным предприятием в хозяйственный суд, на сумму 95,7 млн р. и 44,2 тыс. р., при этом сумма дебиторской задолженности на начало 2009 г. составила 10 786 млн р.

Следовательно, в целях финансового оздоровления предприятия необходимо привлекать юридические фирмы, предоставляющие новые и уникальные для рынка коллекторские услуги и услуги по взысканию долгов, в т.ч. и с нерезидентов Республики Беларусь. При этом, услуги юридической фирмы фактически являются платными, понесенные расходы по оплате услуг будут взысканы с должника по решению суда.

Использование профессиональных юридических услуг по возврату долгов и задолженности - элемент эффективного управления дебиторской задолженностью.
УДК 621.839

АНАЛИЗ МОМЕНТОВ ФРИКЦИОННЫХ ШАРИКОПОДШИПНИКОВЫХ ПЕРЕДАЧ В СТАТИКЕ

Д.В. ДАБЫДЕНКО

Научный руководитель М.Ф. ПАШКЕВИЧ, д-р техн. наук, проф.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Шарикоподшипник устанавливался в корпус, его внутреннее кольцо связывалось с ведущим валом, а сепаратор связывался с ведомым валом передачи через специальный диск с роликами, между которыми размещались тела качения подшипника. Экспериментальная передача была снабжена устройством нагружения, позволяющим регулировать расклинивающее усилие подшипника до 1000 Н.

Исследования проводились на стенде состоящем из основания, наружателя, выполненного в виде порошкового электромагнитного тормоза с обмоткой возбуждения, испытуемой передачи, блока питания наружателя. На конце ведущего вала передачи закреплялся рычаг, служащий для нагружения его крепящим моментом до тех пор, пока вал не начнет проворачиваться. Для предотвращения вращения ведомого вала передачи при начале вращения ведущего вала, вал закрепляли в тормозе и также нагружали. Нагружение осуществлялось путем подачи на обмотку возбуждения тормоза напряжения от блока питания. Крепящий момент на ведомом валу регистрировался индикатором часового типа расположенным на тормозе. Одно деление индикатора равняется 0,554 Н·м.

Было проведено шесть серий эксперимента по четыре дубля в каждой серии при следующих значениях расклинивающего усилия R: 107Н, 214Н, 321Н, 428Н, 536Н, 643Н. В результате, в зависимости от расклинивающего усилия подшипника были получены значения моментов на ведущем M1 и ведомом M2 валах передачи. Зная передаточное отношение и моменты на ведущем и ведомом валах, можно определить КПД передачи.

Для статистической обработки экспериментальных данных и построения математической модели эксперимента был использован метод наименьших квадратов. В результате проверки качества полученных моделей было установлено, что зависимость моментов M1 и M2 от расклинивающего усилия Р имеет степенной характер.

УДК 621.9

ПРОБЛЕМА МАКСИМИЗАЦИИ ПРИБЫЛИ ПРЕДПРИЯТИЯ В УСЛОВИЯХ КОНКУРЕНТНОЙ СРЕДЫ

Т.Л. КРУПЕНЬКО

Научный руководитель В.А. ШИРОЧЕНКО, канд. техн. наук, доц.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Целью функционирования промышленного предприятия является удовлетворение запросов и нужд потребителей путём производства продукции, пользующейся спросом на рынке, результатом чего является получение прибыли. Важным моментом является то, что деятельность предприятия направлена не на накопление прибыли в денежной форме, а на её распределение на инвестиции и инновации.

Существуют различные пути увеличения прибыли. Наиболее простым кажется путь увеличения отпускной цены, что должно в конечном итоге привести к увеличению общей массы прибыли за отчётный период. Но в действительности так происходит крайне редко. Это связано с тем, что в условиях жёсткой конкуренции увеличение цены вызовет снижение спроса на продукцию предприятия, так как потребители отдают предпочтение товарам конкурентов, если они не уступают по качеству.

В связи с этим наиболее эффективным является способ увеличения прибыли путём уменьшения отпускной цены. Следствием снижения цены является привлечение новых клиентов, реализация большей партии товаров, ускорение оборачиваемости средств предприятия. Это приводит к получению дополнительной прибыли и снижению себестоимости единицы продукции за счёт расширения накладных расходов на большее число изделий. Эффект от ускорения оборачиваемости выражается в увеличении выпуска продукции без дополнительного привлечения финансовых ресурсов. У предприятия появляется возможность полученные от реализации продукции денежные средства опять вложить в оборот, в результате чего объём продаж возрастает, а, следовательно, произойдет наращивание массы прибыли.

Однако нельзя бесконечно снижать цену, иначе это может привести к тому, что предприятие в конечном итоге может понести убытки. Существуют некоторые оптимальное соотношение цены и объёма, при котором предприятие получит максимальную прибыль. Для решения данной оптимизационной задачи разрабатывается математическая модель, позволяющая предприятию принимать управленческие решения в области установления цен на производимую продукцию.
Данные официальной статистики не в полной мере отражают реальное положение дел в сфере миграционного движения интеллектуального капитала, где имеет место одна из наиболее опасных форм интеллектуальной миграции — теневая, которая не поддается учету и, соответственно, контролю.

Аналлиз структуры качественного состава работников, относящихся к сфере НИОКИ, показал, что в Республике Беларусь к вышеуказанному составу относятся только исследователи, имеющие ученые степени доктора и/или кандидата наук, в то время как в зарубежных странах к технологически ориентированным работникам кроме вышеназванных относятся:
- руководители предприятий, учреждений, организаций;
- руководители производственных подразделений в промышленности, подразделений компьютерных услуг, научно-исследовательских подразделений и подразделений научно-технической подготовки производства;
- руководители проектов и программ;
- менеджеры в обрабатывающей промышленности;
- управленцы по работе с информацией;
- менеджеры в области исследований и разработок;
- профессионалы в области информационного анализа, физики, астрономии, meteorологии и химии, математики и статистики, архитектуры и строительства, инженерного дела, общественных и медицинских наук;
- управленцы в сфере компьютеризации, маркетинга, эффективности предпринимательства, финансовой деятельности, рационализации производства и интеллектуальной собственности;
- технические исполнители в области физических наук и вычислительной техники;
- фармацевты.

Поэтому возникают трудности при осуществлении сравнительного анализа исследуемого объекта в связи с различиями в его классификации, что требует приведения в соответствие указанных параметров при отнесении отдельных категорий работ к высокотехнологическим (технологически ориентированным).
АВТОМАТИЗАЦИЯ РАСЧЕТА РЕМЕННЫХ ПЕРЕДАЧ И ПОСТРОЕНИЕ ТВЕРДОТЕЛЬНЫХ МОДЕЛЕЙ ШКИВОВ

А.К. МАТВЕЕВ
Научные руководители: В.В. ПЯТОВ, д-р техн. наук, проф.; А.Н. ГОЛУБЕВ
Учреждение образования «ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»
Витебск, Беларусь

При решении различных инженерно-проектировочных задач конст-руктор сталкивается с проблемой расчетов и построений, часто используемых в машиностроении, элементов. Существует большое количество сис-тем автоматизированного проектирования, оснащенных дополнительными библиотеками, которые позволяют проводить расчет и построение многих типов таких элементов.

Целью данной работы является создание библиотеки для САПР КОМПАС 3D, которая позволит автоматизировать расчет и построение шкивов и ремней ременных передач, со сведением участия в этом процессе конструктора к минимуму. В ходе решения данной задачи были рассмотрены стандартные методики расчета шкивов (диаметры типов ремней, напряжения на валы передачи) и другие характеристики проектируемых изделий.

Для реализации поставленной цели было решено воспользоваться средствами КОМПАС-МАСТЕР и языком программирования Borland Delphi. На Delphi был написан интерфейс и модуль расчета характеристик рассчитываемой передачи, при помощи набора КОМПАС-МАСТЕР был реализован алгоритм построения 3D-моделей шкивов и ремня.

Разработанная прикладная библиотека запускается из среды КОМ- ПАС 3D через менеджер библиотек. Для расчета требуется выбрать тип проектируемой передачи, задать начальные параметры: крутящие моменты на валах; частоту вращения ведущего вала; передаточное число передачи; задать режим работы. После чего проводятся расчеты и, в случае ошибки, библиотека сигнализирует об обнаружении ошибки и предлагает возможные пути ее решения. После завершения расчетов необходимо выбрать требуемое действие: построение 3D-моделей шкивов, 3D-модели ремня или рабочих чертежей рассчитанных шкивов.

На данный момент библиотека оснащена модулем расчета и построе-ния только для клиновременной передачи. В настоящее время продолжают-ся работы в области расширения типов рассчитываемых передач (плоско-ременная, зубчатоременная).

УДК 681.3.069

НАПРАВЛЕНИЯ ОРГАНИЗАЦИИ МАРКЕТИНГОВОЙ ДЕЯТЕЛЬНОСТИ В СОВРЕМЕННЫХ УСЛОВИЯХ

О.В. КОХАН
Научный руководитель М.В. ПЕТРОВИЧ, д-р экон. наук, проф.
Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»
Минск, Беларусь

В современных условиях хозяйствования под влиянием глобализации, гиперконкуренции и информационной революции ключевыми условиями эффективной работы службы маркетинга являются: рациональная структура службы маркетинга, обученный персонал, его заинтересованность в результате собственного труда, информационная поддержка принимаемых маркетинговых решений.

Посому характерной чертой новых структур отделов маркетинга должны стать: ориентация на долгосрочную перспективу, проведение фундаментальных исследований, автоматизация и оптимизация рабочих операций, инновационная деятельность.

Зачастую на большинстве отечественных предприятий используется функциональная структура управления маркетингом, которая отличается простотой упрощения, но нередко и негибким. Недостатки функциональной структуры (становится препятствием на пути эффективной маркетинговой деятельности предприятия).

Одним из вариантов организации маркетинга является новый организационный тип маркетинга баз данных и переход от сегментационного подхода к индивидуальному маркетингу. Все функции маркетинга модер-низируются и строятся вокруг базы данных клиентов. Многие маркетинго- вые задачи (установление цен на продукцию, программное обеспечение продуктивности работ, анализ продаж, планирование нового продукта) мо-гут быть решены в маркетинговой информационной среде (МИС), в основе которой лежит база данных.

Одним из принципов развития МИС является внедрение CRM-систем (Customer Relationship Management), в центре внимания которых находится клиент компании. Преимуществами от использования CRM-систем являются: в первую очередь, повышение объема продаж за счет формализации и контроля самого процесса продажи и повышения процента заклю-ченных сделок, а также снижение себестоимости продукции за счет автоматизации и оптимизации процесса продажи, во-вторых, возможность ведение целевого маркетинга и сегментации клиентской базы позволяет удерживать постоянных клиентов и привлечь новых.
СИНЕРГЕТИКА И СОЦИАЛЬНО-ЭКОНОМИЧЕСКИЕ ПРОБЛЕМЫ РАЗВИТИЯ ОБЩЕСТВА

И.К. ЗОТОВ
Научный руководитель Е.С. ЖЕСТКОВА, канд. экон. наук, доц.
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Синергетика – новая междисциплинарная наука, появившаяся в 70-е годы XX века. Это новая парадигма современной науки, ее философия и методология. В этом смысле синергетика рассматривается как одна из фундаментальных концепций современной научной картины мира. В кратком своем определении синергетика представляет собой теорию самоорганизации сложных систем различной природы.

Синергетика основана на идеях системности мира и научного знания о нем, общности закономерностей развития объектов всех уровней материальной и духовной организации, нелинейности, т.е. многовариантности и необратимости событий, глубинной взаимосвязи хаоса и порядка.

Актуальность синергетики высока и в приложении к социально-экономическим проблемам развития общества по той простой причине, что синергетика занимается сложными нелинейными диссипативными системами, к которым относятся социально-экономические системы.

Методология синергетики равным образом предполагает восхождение от конкретных экспериментальных данных к теоретическим и междисциплинарным обобщениям, так и обратный процесс – прикладное использование теоретических представлений и разработанных моделей в различных сферах практической деятельности.

Категорный аппарат синергетики для социологов и экономистов на первый взгляд кажется слишком сложным и переполненным естественнонаучной терминологией. Но сегодня социальные, экономические явления и со всей полнотой исследуют их динамику.

Активно разрабатывается математический аппарат синергетики. Он достаточно сложный и его практическому внедрению будет способствовать использование современных мощных вычислительных систем.

При помощи методов синергетики представляется возможным исследовать локальные и мировые кризисы различного генезиса: финансовые и экономические; экологические и техногенные катастрофы; изменение климата; экстремизм и терроризм; и другие проблемы современного общества.
УДК 621.833.389
ЭКСЦЕНТРИКОВЫЕ ЗУБЧАТЫЕ ПЕРЕДАЧИ
С ПОВЫШЕННЫМ ТЕХНИЧЕСКИМ УРОВНЕМ
О.Е. ПЕЧКОВСКАЯ
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Эксцентриковые зубчатые передачи с модифицированным внутрен
ним эвольвентным зацеплением обладают широкими возможностями в
части достижения больших передаточных отношений и обеспечения мини
мальных массогабаритных параметров. Предлагаемая модификация
обеспечивается за счет реализации постоянного межосевого расстояния
экскентриковой передачи, равного модулю зацепления, изменения диамет
ра сателлита и утонения его зубьев на постоянную величину при чистовой
обработке.

Одна из областей применения разработанных методических подходов включает
экскентриковые зубчатые передачи с разностью чисел зубьев колес в заце
плении, достигающей шести. Однако предельное передаточное отношение,
определяемое числом зубьев сателлита, достигается при разности чисел
зубьев, равной единице.

Результаты экспериментальных исследований модифицированной зубчатой передачи, а также ее геометрический и силовой анализ позволяют
сделать заключение о ее высоком техническом уровне.

Так нагрузочная способность модифицированной передачи вследст
вие повышенной многопарности зацепления в 1.5…1.9 раз выше, по срав
нению со стандартной передачей. Наибольшие величины контактных на
прижений в эксцентриковой модифицированной передаче до 1.3 раз мень
ше, чем в стандартном зацеплении, также обеспечивающее разность чисел
зубьев колес, равную единице, и выполненному на основе смещения исход
ного контура при нарезании обоих зубчатых колес зацепления. Напряже
ния изгиба до 1.9 раз меньше, чем в зубных колесах, полученных без смеще
ния и модификации, аналогичной эксцентриковой передачи.

Путем экспериментальных исследований кинематических погрешно стей и их амплитудно-частотных спектров установлено, что редукторы в
сборе, построенные на основе таких передач и содержащие колеса, полу
ченные только фрезерованием, характеризуются более высокой кинемати
ческой точностью и плавностью работы по сравнению со стандартными
зубчатыми передачами и обеспечивают кинематическую точность, соот
ветствующую 8 степени, и плавность работы, соответствующую 7 степени.

УДК 338
ВНЕДРЕНИЕ ПРИЕМОВ МАРКЕТИНГА В ДЕЯТЕЛЬНОСТЬ
ТОРОГОВОЙ ОРГАНИЗАЦИИ С ЦЕЛЬЮ УВЕЛИЧЕНИЯ
ОБЪЕМА ПРОДАЖ
В.И. ВОРОБЫЕВ
Научный руководитель Л.В. НАРКЕВИЧ, канд. экон. наук, доц.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Маркетинговые исследования показали, что по многим группам това
ров потребителю не видит заметной разницы между конкурирующими мар
ками. Только на 20 % выбор потребителя определяется свойствами товара,
и на 80 % - его окружением (дизайн, цена, марка, удобство приобретения,
атмосфера магазина). Более того, более 2/3 всех покупок приобретаются
спонтанно, т. е. решение о том, что их нужно купить, принимается непо
средственно в магазине.

Магазин может значительно увеличить свой объем продаж путем осо
бой выкладки, грамотного размещения рекламных материалов и проведе
ния специальных акций по продвижению товаров. Таким образом, если
покупатель сомневается: купить или не купить – необходимо сильнее сти
мулировать его в сторону положительного решения. А если поиск и выбор
tовара превратить в увлекательное занятие – это увеличит время пребыва
ния покупателя в торговом зале и «заставит» его потратить на покупки на
15 % больше денег.

Мерчандайзинг достаточно новое направление в маркетинге, которое в
последнее время стало популярным среди производителей, дистрибью
торов и розничных продавцов. Мерчандайзинг – это направлений тор
гового маркетинга. Это комплекс мероприятий, направленных на продви
жение того или иного товара, марки, вида или упаковки, которые провод
ятся непосредственно в торговом зале.

Говоря об исследуемом розничном торговом предприятии (ОАО
«Арма»), необходимо отметить, что конечно оно продаёт не «свои», не
родные» ему товары. Однако прибыль, рентабельность, и, следовательно,
возможность развития данного торгового предприятия зависит только
лишь от количества проданных им товаров и от правильно сформирован
ного ассортимента. Поэтому розничной торговле, и в частности ОАО «Ар
ма», также необходимо широко внедрять различные приемы мерчандай
зинга в организации продаж, так как анализ сферы мерчандайзинга на дан
ном предприятии торговли показал, что правила «искусства торговли»
почти не соблюдаются, а точнее, соблюдение некоторых из них – это ско
рее всего лишь случайное совпадение.
УДК 338
РОЛЬ ПРИБЫЛИ ТОРГОВОЙ ОРГАНИЗАЦИИ В ПОВЫШЕНИИ ЕЕ ЭФФЕКТИВНОЙ РАБОТЫ

В.И. ВОРОБЬЕВА
Научный руководитель Л.В. НАРКЕВИЧ, канд. экон. наук, доц.
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Прибыль является одной из главных целей торгового предприятия, показателем конечного финансового результата его торгово-хозяйственной деятельности. Для розничных торговых предприятий целью их хозяйственной деятельности являются: розничный товарооборот (социально-экономический показатель) и прибыль (финансово-экономический показатель). Главная цель коммерческой деятельности – получение прибыли через удовлетворение покупательского спроса при высокой культуре торгового обслуживания. Эта цель в равной степени важна как для организаций и предприятий, так и для отдельных лиц, осуществляющих операции купли-продажи на рынке товаров и услуг. В условиях становления и развития рыночной экономики прибыль является основным показателем оценки предпринимательской деятельности предприятий, так как в ней аккумулируются все доходы, расходы, потери и убытки, обобщаются результаты хозяйствования. По прибыли можно определить рентабельность, изучить эффективность функционирования субъектов хозяйствования. Переход к рыночной экономике требует от предприятия торговли повышения внимания к оценке эффективности торговой деятельности, анализу экономических показателей и выявлению резервов улучшения их состояния. Важная роль в реализации этой задачи отводится анализу хозяйственной деятельности торговых предприятий. С его помощью вырабатываются артикулирование и тактика развития торгового предприятия, обосновываются планы и управление решением, осуществляется контроль за выполнением, выявляются резервы повышения эффективности торговой деятельности, осуществляются результаты деятельности предприятия, его подразделений и работников.

Прибыль формирует реальную самостоятельность субъектов хозяйствования. Являясь главной движущей силой рыночной экономики, она обеспечивает интересы государства, собственников и персонала предприятия. Поэтому одной из актуальных задач современного этапа является исследование и использование финансовыми менеджерами современных методов эффективного управления формированием и распределением прибыли в процессе операционной, инвестиционной и финансовой деятельности предприятий.

УДК 621.833.389
ПОВЫШЕНИЕ ПОДАТЛИВОСТИ ЗУБЬЕВ САТЕЛЛИТА ЭКСЦЕНТРИКОВОЙ ЗУБЧАТОЙ ПЕРЕДАЧИ

О.Е. ПЕЧКОВСКАЯ
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Повышенной податливостью обладают зубья сателлита эксцентриковой зубчатой передачи с модифицированным внутренним эвольвентным зацеплением. Модификация, представляющая собой изменение межкосевого расстояния передачи, диаметра сателлита и последующее удаление зон интерференции зубьев посредством их утонения при частой левой и абрэзивной обработке, не приводит к изменению эвольвентной формы зубьев и, как следствие, условия работы зубчатого зацепления. При реализации разности чисел зубьев колес, равной единице, в такой передаче достигается предельное передаточное отношение, определяемое числом зубьев сателлита. При этом решается не только задача достижения большого передаточного отношения, снижения массогабаритных параметров, но и повышения нагрузочной способности передачи за счет повышенной многопарности зацепления, достигающей с учетом повышенной податливости зубьев сателлита 20 % от их числа.

Для оценки увеличения податливости зубьев был проведен сравнительный анализ податливости стандартизованного зуба сателлита (без смещения исходного контура) и зуба с модифицированным профилем. Зуб сателлита был представлен в виде балки с переменным сечением, защемленной одним концом и нагруженной на другом конце у вершины окружной силой. На основе интегрирования дифференциального уравнения изогнутой оси зуба как консольной балки получена аналитическая зависимость для определения прогибов в произвольных сечениях зуба сателлита. Расчет перемещений зубьев сателлита проводился в табличном процессоре Microsoft Excel.

В результате анализа расчетов податливости зубьев сателлита эксцентриковых передач для широкого диапазона передаточных отношений установлено, что податливость модифицированных зубьев может быть увеличена до 1,7 раз по сравнению с немодифицированными зубьями.
Проведенный анализ уровня податливости модифицированных зубьев позволил также доказать предположение, что в таких передачах, даже при приложении небольшой нагрузки и возникновении упругих деформаций, зубья во внутреннем зацеплении, имеющие малый зазор, составляющий сотые доли миллиметра, окажутся работающими.
Планетарные шариковые передачи применяются, в настоящее время, для увеличения передаваемых усилий ручного механизированного инструмента (базлонных ключей, гайковертов и т.д.) и для создания малогабаритных редукторов технологического оборудования. Благодаря компактности, данные передачи могут встраиваться в механизмы, работающие в условиях ограниченных диаметральных размеров.

При вращении ведущего вала тела качения вследствие наложенных связей перемещаются по поверхности неподвижного втулка, а также вдоль продольных пазов ведомого вала, вынуждая его вращаться с реакцией.

Рассматривались два типа пазов, выполненных на ведомом валу, представляемых прямоугольным и круглым профилями. В ходе исследования был произведен силовой анализ на основе фрикционной модели защелки, на основе которого разработаны алгоритмы определения КПД передачи, а также расчета ведомого вала на прочность. Для проведения экспериментов были изготовлены детали ведомых валов с пазами соответствующей формы.

Разработанные алгоритмы позволяют подбирать необходимый тип профиля паза, исходя из конкретных условий применения планетарной шариковой передачи, и приближенно оценить КПД разрабатываемой передачи.

В итоге, исходя из анализа изученных преимуществ и недостатков исследованных типов пазов на ведомом валу и на основании расчетов по разработанным алгоритмам с использованием фрикционной модели, можно сделать вывод о том, что пазы с прямоугольным профилем по сравнению с пазами с криволинейным профилем, при одинаковом передаточном отношении, имеют (теоретически) более высокие значения КПД. Однако ведомые вальные с пазами криволинейного профиля имеют более высокую прочность из-за линейного контакта тела качения с рабочими поверхностями вала и более высокую износостойкость, что позволяет снижать массу и габариты редуктора. Также, это позволяет при тех же габаритах, не снижая прочности редуктора, увеличить передаточное число передачи.
УДК 338
ВЛИЯНИЕ КОНЦЕНТРАЦИИ РЫНКА НА ДЕЯТЕЛЬНОСТЬ
ПРЕДПРИЯТИЙ В ОТРАСЛЯХ ЭКОНОМИКИ РЕСПУБЛИКИ БЕЛАРУСЬ

А.Г. БЕНДЕГА
Учреждение образования
«ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ
УНИВЕРСИТЕТ им. П.О.Сухого»
Гомель, Беларусь

На основе статистической информации Республики Беларусь о ре-
зультатах деятельности отдельных отраслей экономики авторами было
проведено исследование влияния концентрации рынка на эффективность
функционирования предприятия.

На основе данных последних 7 лет было выявлено в каких отраслях
прослеживается влияние концентрации на эффективность функци-
ционирования предприятия. Эти осуществлялись путем нахождения коэф-
фициента корреляции и периода наблюдения. К таким отраслям относятся
топливная, химическая и нефтехимическая. Результаты такой взаимосвязи
показаны в табл.1.

Табл. 1. Влияние концентрации на эффективность функционирования
предприятия

<table>
<thead>
<tr>
<th>Отрасль</th>
<th>Коэффициент корреляции (концентрация рынка и рентабельность предприятий)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ул.вес 3 фирм</td>
</tr>
<tr>
<td>Топливная</td>
<td>-0,695</td>
</tr>
<tr>
<td>Химическая и нефтехимическая</td>
<td>0,775</td>
</tr>
</tbody>
</table>

В результате полученных расчетных данных сделан вывод о наличии
связи между концентрацией и эффективностью только в топливной и неф-
технической отраслях. Об этом свидетельствует показатель Табл.1, уро-
вень которого выше 2,05. Было установлено, что в топливной отрасли
связь обратная – увеличение прибыли влечет за собой снижение концен-
трации. Это свидетельствует о вступлении новых фирм в отрасль, при ко-
тором конкуренты с их стороны еще нет (прибыль не изменилась), но
концентрация уже уменьшилась. В нефтехимической отрасли связь пря-
мая. Данные отрасли капиталоемкие, в связи с чем затруднен вход на ры-
нок. Антимонопольная политика в этих отраслях слабо развита, так как
они принесут значительный уровень дохода государству.

Во всех остальных отраслях связь не обнаружена. Она либо отсутствует,
либо незначительна. Это прежде всего свидетельствует о свободном
входе на рынок, что снижает концентрацию и говорит об осуществлении на
высоком уровне антимонопольной политики.

УДК 621.833.389
КИНЕМАТИЧЕСКАЯ ТОЧНОСТЬ ЧЕРВЯЧНОЙ ПЕРЕДАЧИ
C ТЕЛАМИ КАЧЕНИЯ НА ЧЕРВЯКЕ

С.Н. РОГАЧЕВСКИЙ
Научный руководитель М.Ф. ПАШКЕВИЧ, д-р техн. наук, проф.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

В машиностроении для обеспечения требуемых частоты вращения и
крутящего момента ведущего вала машины, механизма и технологического
оборудования широко используют червячные передачи из-за их компак-
тности, широкого диапазона передаточных чисел, высокой кинематической
точности, бесшумности, возможности самоторможения. Недостатком этих
передач является низкий КПД, стремление повысить его привело к созда-
нию червячных передач качения.

В этих передачах скольжение кинематических пар заменено на каче-
ние пальцев или подшипников по червяку, что позволило значительно снизить
потери передаваемой энергии, и это является актуальным.

С целью снижения числа тел качения в таких передачах разработаны
передача, состоящая из червяка в виде вала с закрепленными на нем
промежуточными телями качения (подшипниками качения) и червячного
колеса, содержащего рабочий венец, состоящий из конусных частей
эвольвентных зубьев.

Созданы методика, алгоритм и программа для ПЭВМ исследования
кинематических параметров передачи, имеющей конструкцию в соответ-
ствии с заявкой на выдачу патента Республики Беларусь на изобретение
№ a20081032 «Червячная передача».

Исследования кинематической точности передач выявили необходимость
осевого смещения венца червяка из-за разницы углов подъема тела тел
качения на червяке и профиля зубьев колеса, увеличения радиусов кривизны
рабочих участков поверхностей зубьев, уменьшения шага расположения
промежуточных тел качения на червяке. В результате исследований
скорректирована рабочая документация редуктора, созданного ранее на
основе этой передачи (u=18, T=120 Н-м, КПД=96 %): венец червяка сме-
щен в осевом направлении на 38,19 мм (при угле подъема тела качения на
червяке и профиля зубьев колеса 9,13° и 20° соответственно), максимально
увеличен радиусы кривизны рабочих участков поверхностей зубьев по-
ложительным смещением фрезы до получения толщины зубьев на вершинах
1,3 мм, уменьшен шаг расположения подшипников на червяке до 13,22
мм (до зазора между наружными кольцами подшипников в 0,4 мм).
УДК 621.357.6
ОБОРУДОВАНИЕ И ТЕХНОЛОГИЯ НАНЕСЕНИЯ ПОЛИМЕРНЫХ ПОРОШКОВЫХ ПОКРЫТИЙ ЭЛЕКТРОСТАТИКО-ТЭРМОГАЗОДИНАМИЧЕСКИМ СПОСОБОМ

Н.Я. ГАЛИМОВА, С.А. ВОРОНЦОВ
Научный руководитель Э.Е. ТУКБАЕВ, канд. техн. наук, доц.
Государственное образовательное учреждение высшего профессионального образования
«КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. А.Н.ТУПОЛЕВА»
Казань, Россия

В работе приведены результаты исследований по разработке комбинированного электростатико-термогазодинамического способа нанесения полиmericных порошковых покрытий специального назначения на поверхности материалов, а также комплекса специализированного оборудования для реализации технологического процесса.

Комплекс специализированного оборудования для нанесения ППК электростатико-термогазодинамическим способом состоит из порошкового питателя с пневматической панелью управления, блока подготовки воздуха, компрессора подачи сжатого воздуха, системы подачи газа с контролю-но-регулирующей аппаратурой, двух термогенераторов с оптическими измерителями температуры (оптические пирамиды), размещенных на передвигаемой технике с автономным приводом.

Термогенераторы размещены на каретке с возможностью регулирования высоты от сопла распылителя до поверхности изделия и межосевого расстояния, при этом параметры настраиваются таким образом, чтобы их оптическая ось проходила через центр предполагаемого отпечатка факела наносимой порошко-воздушной смеси (ПВС).

В отличие от существующего оборудования, где процесс формирования покрытий на поверхности изделий происходит в интервале температур 70-200 °C в течение 10-15 минут, разработанный комплекс оборудования позволяет получать покрытия на поверхностях различных материалов и изделий в течение нескольких секунд, не помещая их в стационарные сушильные камеры.

УДК 338.658.012
ПОРЯДОК ОЦЕНКИ УРОВНЯ РАЗВИТИЯ ПРЕДПРИЯТИЯ

С.А. АЛЕКСАНДРОВА
Научный руководитель Н.А. СМОЛЬСКАЯ, канд. экон. наук, доц.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Учебное образование
«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»
Могилев, Минск, Беларусь

Оценка состояния, уровня и перспективы развития предприятия является важнейшим этапом управленческой деятельности на предприятии. Она может быть произведена в следующей последовательности.

На первом этапе рассчитывается группа результативных показателей деятельности предприятия. Их оценка дает основание сделать общий вывод об эффективности работы предприятия. Сравнительный анализ в динамике и со средними показателями, сложившимися в отрасли дает возможность позиционировать предприятие как успешное или отстающее. К этой группе показателей можно отнести абсолютные показатели: объем продаж, сумма капитала, прибыль, а также относительные: рентабельность продаж, коэффициент оборачиваемости капитала и рентабельность капитала.

Задача второго этапа – создать основу для разработки мероприятий по совершенствованию процесса развития предприятия. В этих целях следует выделить основные виды ресурсов: трудовые, ресурсы и капитал, включая основной и оборотный. Каждый из ресурсов, как и на предыдущем этапе, может быть охарактеризован абсолютными и относительными показателями.

Результатом этого этапа является диагностика сильных и слабых мест предприятия.

Третий этап привязан системно и комплексно оценить результаты работы на предыдущих этапах и определить тип развития предприятия. С этой целью строятся матрицы, многоугольники развития, рассчитываются интегрированные комплексные показатели.

Так как развитие предприятия является процессом длительным, а при этом будущее состояние закладывается уже сегодня, важным представляется оценка потенциала предприятия для развития. Такая оценка основывается на результатах работы на первых трех этапах, включает расчет ряда специальных показателей, и производится на четвертом этапе.

Как результат такой оценки имеем характеристику текущего этапа развития предприятия и видение его перспектив. Это позволяет сделать максимально обоснованным процесс разработки планов и стратегии развития предприятия.
Производство молока на душу населения в среднем в мире составляет 102,6 кг в год (26 % от рекомендуемой нормы потребления). В Западной Европе на 1 человека в год потребляется более 300 л, во Вьетнаме и Индонезии - только 10 л молока. Рекомендуемую потребность человека в молоке удовлетворяли только Австралия и Новая Зеландия. Ежегодный темп роста потребления молока в мире равен 10-15 млн т. молока. Данная тенденция основана на приросте численности населения в мире, а также повышении уровня потребления молока на душу населения в развивающихся странах.

Установлено, что основными тенденциями мирового рынка молока являются: консолидация участников рынка: рост общего производства молока и молокопродуктов; увеличение объемов мировой торговли сухим цельным молоком и сыром; интенсивный рост мировой торговли в сегментах специальных молочных продуктов (касени, сыворотка, лактоза); решение вопросов безотходного производства молочных продуктов, особенно по переработке сырья; доминирование экологических аспектов в производстве молочной продукции мирового товарооборота.

Производство молочной продукции в Республике Беларусь составляет 4,6 млн. т в год, потребление - 2,245 млн. т в год. На внутреннем рынке Беларуси реализуется около 45 % производимых в стране молокопродуктов. В 2008 г. их потребление населением республики составило 233 кг в год, в то время, как производство молочных продуктов было на уровне 744 кг на душу населения. Поэтому в условиях значительного перепроизводства особое внимание уделяется реализации продукции на внешних рынках. За 2000-2007 гг. экспорт молочной продукции увеличился в 5 раз (с 430 тыс. т до 2184,7 тыс. т). Основным импортером выступает Российская Федерация, что особенно заметно на экспорте сырья, творога и масла животного.

В настоящее время предстоит повсеместное использование конкурентоспособность продукции не только за счет снижения издержек производства, но и путем улучшения ее качества, ассортимента, упаковки, позволяющей увеличить сроки хранения готовой продукции и т.д. Предстоит расширить рынки сбыта продукции за счет стран ЕС, в которых возрастает интерес к экологически чистым, не обработанным продуктам, по производству которых в нашей республике есть огромный потенциал.
ФОРМИРОВАНИЕ ИЗНОСОСТОЙКОГО ПОВЕРХНОСТНОГО СЛОЯ МЕТОДОМ БОРИРОВАНИЯ

В.А. ИГОНИН
Научный руководитель В.О. СОКОЛОВ, д-р техн. наук, проф.
Государственное образовательное учреждение высшего профессионального образования
«ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
Пенза, Россия

Одним из основных методов повышения износостойкости деталей является диффузионная химико-термическая обработка (ХТО), в результате которой на поверхности можно получить новый слой с необходимыми свойствами (физическими, химическими, механическими и др.), отличающийся от основного материала.

Среди процессов диффузионного насыщения особое место занимает борирование, обеспечивающее высокую твердость и износостойкость.

Для деталей типа пластин в условиях серийного производства наиболее перспективными, в экономическом и технологическом отношении, является процесс диффузионного насыщения в боросодержащих порошках.

Развитие этого направления в борировании несомненно перспективно и в значительной мере стимулируется потребностью создания радикальной технологии порошкового борирования для повышения срока службы деталей, работающих на износ в абразивной среде, где поверхностная закалка ТВЧ, азотирование или цементация оказываются малоэффективными.

Не смотря на то, что твердость и износостойкость борированного слоя значительно выше цементированного или азотированного полученных также методами (ХТО), процесс борирования, в частности в порошках, не нашел должного промышленного применения. Это объясняется недостаточностью и часто противоречивостью практических рекомендаций для промышленного использования борирования.

Существующие технологии борирования в порошковых смесях не в полной мере используют потенциальные возможности этого способа. Борирование обычно производится в специальных, герметически закрываемых плавках затвором контейнеров, что значительно усложняет и удлиняет процесс выгрузки деталей. Отсутствуют рекомендации по выбору рабочего состава насыщающих смесей, что приводит к необоснованно большому расходу дорогостоящих компонентов, увеличению времени насыщения и энергозатрат.

ДОПОЛНИТЕЛЬНЫЕ ИНФОРМАТИВНЫЕ ПАРАМЕТРЫ СИГНАЛОВ ПРИ МАГНИТОГРАФИЧЕСКОМ КОНТРОЛЕ

А.В. ШИЛОВ, А.В. КУШНЕР
Научный руководитель В.А. НОВИКОВ, д-р техн. наук, проф.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Различные дефекты по-разному влияют на работоспособность изделий. Риски и выявины не считаются опасными дефектами сплошности для многих объектов. Практически для всех изделий трещины и несплавления любой глубины недопустимы. Как правило, для объектов установлен определенный браковочный уровень по непроварам, порам, неметаллическим включениям и т.д. Поэтому анализ и оценку дефектов в изделии по виду сигналограмм следует производить с учетом их влияния на работоспособность изделия отдельно по каждому виду дефекта.

Основными информативными параметрами сигналов при магнитографическом контроле (МГК) являются амплитуда, длительность импульса, протяженность сохранения электрического сигнала от дефекта на экране дефектоскопа при протяжке ленты. Однако они не всегда позволяют идентифицировать вид дефекта, что требует определения дополнительных информативных параметров сигналов.

При МГК с намагничиванием контролируемого объекта через магнитопровод трещины, сквозные и узкие несплошности не обнаружаются двуполярным электрическим импульсом, а дефекты с дном (риски, широкие несквозные несплавления, углубления от поверхностных неровностей) — в зависимости от условий контроля —однополярным (с двумя отрицательными полуволнами), трансформированным или двуполярным сигналом. Для постоянного магнита с H = 2400 А/см, B = 0,39 Тл экспериментально установлены условия, при которых одновременно обеспечивается наибольшая чувствительность метода контроля, трещина, сквозное и узкое несквозное несплавление обнаруживаются двуполярным сигналом, а другие несплошности — однополярным. При найденных условиях контроля установлены новые информативные параметры сигналов от дефектов: вид сигнала, т.к. сигнал принимает однополярный или двуполярный вид в зависимости от наличия или отсутствия дна у несплошности, что позволяет повысить селективность метода; и размерах (вместо амплитуды), т.к. смена полярности сигнала при изменении условий контроля происходит, минуя стадию перехода через ноль его размаха, что позволяет исключить пропуск дефектов и повысить достоверность контроля.
Свойства подошвенных материалов при изгибе входят в комплекс свойств, определяющих надежность обуви при эксплуатации. Однако анализ литературных данных показал, что, несмотря на важность этих свойств, они изучены недостаточно, в настоящее время отсутствует единый метод испытания различных подошвенных материалов на изгиб.

На протяжении ряда лет созданы методы и средства оценки свойств полимерных материалов при изгибе, отличающиеся способом приложения сил, конструкцией приборов, формой и размерами образцов, вследствие чего, результаты испытаний практически несопоставимы. В целях получения объективной оценки свойств различных материалов при изгибе, необходимо чтобы все материалы испытывались в одинаковых условиях.

Прибор для испытания материалов низа обуви на изгиб разработан на основе прибора, предназначенного для определения устойчивости к растрескиванию лицевого слоя и коэффициента ломкости лицевого слоя подошвенных кож при изгибе по ISO 3378:2002. Данный прибор отличается от прототипа конструкцией: увеличенны ход губок зажима и их высота, высота смешенных цилиндров, высота и диаметр цилиндрического ролика. Разработанный прибор является универсальным и может применяться для испытания наружных, внутренних и промежуточных деталей низа обуви и систем материалов.

Прибор имеет следующие основные части: зажим, который жестко фиксирует один конец испытываемого образца; цилиндрический ролик диаметром (40,0±0,5) мм с рукояткой, перпендикулярной его оси; набор цилиндров, диаметр которых 61,67±0,03; 35,00±0,03; 23,57±0,03; 17,22±0,03; 13,18±0,03; 10,38±0,03 мм.

Методика проведения испытаний материалов на изгиб предполагает испытание образцов с проколом, с канавкой (по методу Дематта) и надрезанных и позволяет определить устойчивость материала к изгибу.

Критериями оценки являются: отсутствие или наличие повреждений материала, процент восстановления формы, изменение размеров канавки, надреза.
УДК 621.785:621.793.4
КРИТЕРИИ ОЦЕНКИ КАЧЕСТВА ЗУБЧАТЫХ КОЛЕС
ПОСЛЕ ЦЕМЕНТАЦИИ

Р.Р. КАЛИМУЛЛИН, Т.В. АСТАЩЕНКО, И.М. РОДЬКИН
Научный руководитель В.И. АСТАЩЕНКО, д-р техн. наук, проф.
Государственное образовательное учреждение
высшего профессионального образования
«КАМСКАЯ ГОСУДАРСТВЕННАЯ ИНЖЕНЕРНО-ЭКОНОМИЧЕСКАЯ
АКАДЕМИЯ»
Набережные Челны, Россия

В настоящее время насчитывается более 50 показателей для оценки
качества деталей упрочненных методами цементации и нитроцементации. По
некоторым из них существуют противоречия, а отдельные - требуют
уточнения и обоснования. Ключевое внимание в работе уделено методам
определения эффективной глубины цементованного слоя; технологии вы-
бора толщины упрочнения для зубчатых колес, валов и других деталей
машины; структурному состоянию и твердости непосредственно поверхно-
сти и по сечению упрочненного слоя; размеру зерна и степени разнозерни-
стости цементованного слоя, переходной зоны и сердцевины; фактору ге-
терогенности структуры цементованного слоя; унаследованной от метал-
лургии структурой и химической неоднородности; а также технологиче-
скому наследственности (чистоте поверхности, геометрической точности
пятну контакта между зубьями в зацеплении).

Выявлено влияние ликвидационных проявлений в стали на формирова-
ние структуры и свойств деталей, изготавляемых с применением тепло-
вых методов обработки. Разработана методика выявления размера зерна в
переходной зоне цементованного слоя и показана связь степени разнозер-
нистости с усталостной прочностью деталей.

Основополагающим критерием качества цементованных деталей яв-
ляется отношение глубины упрочненного слоя к сечению изделия, которое
зависит от формы, назначения и условий работы детали и находится в пред-
елах от 0,12 до 0,27.

Найлучшая связь наблюдается между отдельными показателями экс-
плуатационных свойств изделий и толщины упрочненного слоя, которая
определяется до контрольной точки с твердостью Hv610.

Для мелкомодульных шестерен предложено использовать металло-
прокат с гарантированной прокалываемостью на расстоянии 5 мм от торца
стандартного закаленного образца.

УДК 620.17
ИСПЫТАТЕЛЬНЫЙ СТЕНД ДЛЯ ПРОЧНОСТНОГО КОНТРОЛЯ
ПОЛИМЕРНЫХ МАТЕРИАЛОВ

А.Ю. ТРУСОВ, В.С. РУМЯНЦЕВ
Научный руководитель А.К. НОВИКОВ
Учреждение образования
«ВИТЭБСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ
УНИВЕРСИТЕТ»
Витебск, Беларусь

Проектирование испытательного стенда для прочностного контроля
полимерных материалов осуществлялось с целью создания учебного обо-
рудования, специализированного на проведение исследований полимер-
ных материалов с пределом прочности не выше 130 МПа, для курса «Ис-
пытание надежности и контроль металло-полимерных материалов».

Прицип действия испытательного стенда основан на нагрузжении об-
разца с заданной скоростью деформирования. Конструкция стенда, на дан-
ный момент, предусматривает проведение испытаний материалов только с
постоянной скоростью деформирования, но с возможностью ее широкой
регулировки. Стенд по направлению растягивающего усилия относится к
машинах вертикального действия.

Испытательный стенд имеет нагружающее устройство гидравлическо-
го принципа действия. Основными узлами испытательного стенда являют-
ся: масляная станция, силовой узел, блок распределителей, система подачи
масла, измерительные приборы.

Образцы крепятся в зажимах силового узла. Данный узел состоит из
подвижных и неподвижных направляющих перемещающихся по пазам ко-
лон. К направляющим крепятся зажимы образца рабочее пространство
для проведения испытаний.

Блок распределителей – узел разрывной машины, состоящий из дрос-
селя, гидрораспределителя, клапана редукционного. Данный узел предна-
значен для создания и регулирования необходимого давления для опти-
мальной работы установки. Для контроля давления в системе узел снабжен
манометром.

Для определения деформации образцов используется индукционный
dатчик линейного перемещения, а в качестве индикатора усилия применен
cифровой датчик давления, присоединяемый к напорной магистрали гид-
роцилиндра. Значения давлений в гидросистеме в ходе испытаний образца
пересчитываются в усилие деформации. В рамках дальнейшей работы
планируется вывод данных испытаний на компьютер с построением кри-
вой деформация ε ~ напряжение σ.
УДК 621.9
АНАЛИЗ ИЗОБРАЖЕНИЙ ОТ ДВУХ ВЕБ-КАМЕР С ЦЕЛЬЮ
ВЫДЕЛЕНИЯ НАГРЕТЫХ УЧАСТКОВ ТЕЛА

Н.А. СТАРОВОЙТОВА
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Для определения температуры нагрева деталей в процессе плазменного нагрева были проведены эксперименты с применением web-камеры. Эксперименты показали, что матрица камеры может регистрировать тепловое излучение определенного диапазона. Однако устойчивый результат наблюдается при применении фильтров видимого света, а снижение видимой температурной чувствительности возможно только при дополнительной программной обработке изображения.

Программная обработка изображения сигнала от web-камеры позволяет сохранить изображение тепла, нагретых ниже заданной критической температуры. В конкретных условиях производства, для которого разрабатывается данная система контроля, получение изображения всей детали с наносным покрытием и с выделенными участками перегрева является принципиальным вопросом. Для того чтобы этого добиться, были проведены эксперименты с анализом изображений от двух web-камер, работающих синхронно.

В ходе эксперимента одна камера фиксировала излучение в диапазоне от 0,82 мкм. Это достигалось заменной в ней фильтра частот ИК-диапазона на фильтр видимого света. Изображение с другой камеры было принято за опорное. Изображение от первой камеры обрабатывалось программным способом. В результате этой обработки участки перегрева были окрашены в красный цвет. Изображения от двух камер были наложены одно на другое. Таким образом, было получено изображение нагретой детали в видимом свете с выделением зон нагрева, не видимых человеческому глазу, красным (либо другим по необходимости) цветом.

Проведенные эксперименты позволяют говорить о возможности применения web-камер для создания изображения тепла, нагретых до температуры, неразличимых человеческим глазом, с наложением на обычное изображение цветной маски зоны нагрева в режиме реального времени.

УДК 621.9.048.7: 533.9
СОСТОЯНИЕ СТАЛЕЙ ПОСЛЕ ПЛАЗМЕННОЙ РЕЗКИ
О.И. НАЗАРОВА
Научный руководитель В.В. КРЫЛОВ-ОЛЕФИРЕНКО, канд. техн. наук
Государственное научное учреждение
«ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ НАН Беларуси»
Минск, Беларусь

Все более широко для раскроя листовых металлических материалов используются источники высоко концентрированных потоков энергии: лазерные и плазменные. При этом с помощью лазерного излучения возможна резка листов толщиной до 8-10 мм. Для резки листов большей толщины (25-35 мм и до 100 мм) необходимо применять источники плазменного излучения — плазмотроны.

Механизм плазменной резки состоит в том, что высокозергетическая плазма струя взаимодействует с металлом и расплавляет его по линии воздействия. Прилегающие к линии, по которой плавится металл, микроблемы также разогреваются, но до более низких температур. При этом температура убывает от температуры плавления на границе до комнатной температуры на некотором расстоянии, называемое зоной влияния. После завершения резки металл остывает. Фактически происходит локальная термообработка сплавов в зоне влияния. Соответственно изменяются структура и механические свойства. Большие скорости нагрева и охлаждения, присущие плазменной резке, могут приводить к образованию высоко твердых и прочих фаз, окружающих сплав. Полученный полуфабрикат подвергается, как правило, дальнейшей механической и/или термической обработке.

Скорость резки и интенсивность плазменного воздействия зависят от толщины разрезаемого изделия. Чем она больше, тем больше требуемый рабочий ток и длительность воздействия. Соответственно увеличивается время разогрева металла, ширина зоны влияния и ширина зоны с высокой температурой нагрева.

Установлено, что можно выделить фактически три составляющих зоны влияния: первая — очень тонкий слой металла, претерпевший при резке оплавление, твердость которого максимальна, вторая — слой металла с достаточным изменением твердости толщиной приблизительно 2-3 мм, и третья — слой металла с незначительно изменчившейся твердостью.

В данной работе исследовано влияние плазменной резки на состояние разрезаемых материалов в зоне реза.

Полученные результаты показывают, что после плазменного резания наблюдается некоторое упрочнение на поверхности реза с расширением зоны воздействия. Проведены исследования влияния последующей термообработки с целью восстановления однородности свойств полученного полуфабриката.
Цель работы — определение условий осуществления процесса абразивной активации катодной и анодной поверхностей керамическими частицами, движущимися в потоке электролита-суспензии в процессах формирования композиционных электрохимических покрытий.

Для ведения осаждения металла при высоких плотностях тока требуется обеспечить ускоренную подачу электролита к катоду. Интенсификацию движения катионов к детали осуществляют принудительным перемешиванием или прокачкой электролита. Однако это не решает проблему пассивации поверхности, в результате которой разряд ионов на катоде значительно затрудняется. Удаление пассивирующей пленки обычно производится механическим способом с использованием движущихся щеток. Задача активации поверхности может быть решена также путем использования схемы абразивной очистки поверхности потоком керамических частиц взвешенных в электролите и участвующих в процессе формирования композиционного покрытия.

Разработана математическая модель, позволяющая определить градиентную скорость движения электролита-суспензии в приэлектродной области в которой осуществляется активация электрода без снятия слоя материала

$$v_a = \frac{4.8 \pi \sigma^2}{\gamma (\alpha - \sin \alpha) k \sqrt{1 + f^2}} \cdot \frac{\rho v_p}{k} \cdot n$$

Зависимость учитывает параметры как компонентов электролита-суспензии (f — коэффициент трения порошка по материалу электрода; γ, α — углы контакта частицы порошка с покрытием), так и материала матрицы (σ — предел текучести металла). Относительную скорость v_a частицы в электролите можно определить экспериментально по скорости седиментации частиц из электролита-суспензии.
УДК 621.74
ИСПОЛЬЗОВАНИЕ СТАТИСТИЧЕСКИХ МЕТОДОВ ДЛЯ ПОВЫШЕНИЯ КАЧЕСТВА ОТЛИВОК
А.Ю. ЛЕПИХОВ
Научный руководитель В.М. КАРПЕНКО, канд. техн. наук, доц.
Учреждение образования
«ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. П.О. Сухого»
Гомель, Беларусь

Обостряющаяся конкуренция товаропроизводителей, зарождение и все более широкое распространение потребительского движения в развитых странах привели к возвышению роли качества продукции и услуг для определения рейтинга стран в мировой иерархии. С учетом этого представляется вполне объективным, что обеспечение и повышение качества продукции в условиях рыночных отношений должны быть приоритетными направлениями деятельности.

Предметом исследования является теория и практика управления повышения качества продукции предприятия. Объектом исследования выбран цех высокопроизводительного чугунного РУП «ГЭЛиН».

В практике контроля качества применяют диаграммы, графики, гистограммы и др. В данной работе было предложено воспользоваться диаграммой Парето, чтобы определить, на что направить усилия по улучшению качества продукции. Построенная диаграмма по видам дефектов показала, что наибольшую группу - А составляют дефекты: песчаные раковины, газовые раковины, засор – 80 %, а на долю остальных дефектов приходится 20 % дефектных деталей. Следовательно, с устранения именно этих несоответствий (песчаные раковины, газовые раковины, засор) следует начать работу по обеспечению качества. После выявления проблемы путем составления диаграммы Парето по результатам, важно определить причины возникновения проблемы, чтобы решить ее. Поэтому далее была составлена диаграмма Парето по причинам. Из диаграммы следует, что появление дефектов в значительной степени зависит от свойств формовочной смеси, а значит необходимо разработать способ, который исключит появление большого количества дефектных отливок. После внедрения реконструкции смесеприготовительного участка, получили новые данные, в соответствии с которыми были построены диаграммы Парето. Оказалось, что снижение дефектов по песчаным раковинам составляет 581 деталь, снижение дефектов по вязе формовочной смеси – 770 деталей. Сокращение материальных затрат в результате снижения процента брака составило 24640 тыс. руб.

УДК 621.7
ПОЛУЧЕНИЕ НОВЫХ ВИДОВ СМОЛ ДЛЯ ЛИТЕЙНОГО ПРОИЗВОДСТВА
М.О. ШЕВЧУК, Е.П. ШИШКАКОВ
Научный руководитель М.А. ЗИЛЬБЕРГЛЕЙТ, д-р хим. наук
Учреждение образования
«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»
Минск, Беларусь

В Республике Беларусь действует более 80 предприятий, имеющих литейные цеха и участки. Суммарное годовое потребление смол белорусскими предприятиями составляет более 1700 т и удовлетворяется только за счет импорта.

В БГТУ (г. Минск) проводятся научные исследования по разработке технологии получения и использования смол для литейного производства. Исходным сырьем для их получения являются доступные и недорогие материалы, часть из которых производится в Беларуси: карбамид, фурфурол, формальдегид, дифенололфран, фурфуроловый спирт.

Получение смол осуществляется двумя путями: 1) модифициацией промышленных образцов смол; 2) синтезом из моноэтеров.

Первый вариант прост в технологическом исполнении, но он позволяет получать смолы со значительно ограниченными эксплуатационными свойствами. Второй вариант обеспечивает получение смол с широким спектром свойств. Испытание большого количества промышленных образцов смол показало, что для первого варианта получения пригодны карбамидоформальдегидная смола КФ-Ж и фенолформальдегидная смола СФ-3014. Срок хранения композиционных смол на их основе составил 30–45 сут. В случае использования других видов смол «живучесть» композиционного связующего не превышает 5–10 сут.

Наилучшие образцы смол, полученные по второму варианту, содержат 68–82 % сухих веществ, 0,05–0,10 % свободного формальдегида, 0,3–3,5 % фурфуролового спирта, 1–15 % ацета. Условная вязкость смол на момент их изготовления составляет 30–80 с, рН колеблется от 6,8 до 9,4, фенол в смолах отсутствует.

С использованием полученных смол были приготовлены песчано-смоляные смеси. Расход смолы составлял 1–3% от массы песка. Расход катализатора – 10–30 % от массы смолы. В качестве катализаторов применялись минеральные и органические кислоты. Полученные образцы смол испытаны в технологиях холоднотвердеющих смесей и «горячий ящик». Ведутся работы по получению компонента «А» в «Gold-box-amin-процесс».

128 49
УДК 621.914.2:669
СТРУКТУРНЫЕ ИЗМЕНЕНИЯ В ТВЕРДЫХ СПЛАВАХ ПРИ ИХ ОБРАБОТКЕ В ВЫСОКОВОЛЬТНОМ ГЛЕЮЩЕМ РАЗРЯДЕ
В.М. ШЕМЕНКОВ
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Обработка твердых сплавов в высоковольтном тлеющем разряде, возбуждаемом в среде остаточных атмосферных газов, обеспечивает формирование уникальных структурно-фазовых превращений в их приповерхностных слоях, а также широкий масштаб модификации структуры. Это приводит к изменению эксплуатационного поведения модифицируемых изделий в условиях трибомеханического и трибохимического воздействия.

Исследованию подвергалась партия пластин из твердого сплава ВК8 до и после модифицирующей обработки в тлеющем разряде.

Так удалось отметить, что с ростом удельной мощности горения разряда (от 0,20 до 0,88 кВт/м3) растет глубина модифицированного слоя (от 20 до 250 мкм). Данное изменение можно объяснить возрастающей энергией и количеством наносящих ионов, что способствует более глубокому их проникновению и формированию более длинного каскада смещений в кристаллических решетках фазовых составляющих сплава.

Был выявлен ряд изменений в структуре твердого сплава по отношению к их исходному состоянию. Изменения были связаны с изменением размеров зерен как WC, так и Co, наличия границ деления зерен, особенно зерен WC, размывости межфазных границ WC – Co и образованием зеренных кристаллов. Данные изменения объясняются возникновением внутренних напряжений в рамках отдельных кристаллов твердой фазы вследствие колебаний в структурной решетке, что приводит к образованию плоскостных дислокаций. Во вновь образовавшиеся границы раздела карбидной фазы под энергетическим воздействием тлеющего разряда происходит диффузионное проникновение кобальтовой связи.

Исследование морфологии поверхности выявило, повышение микроперекосов у обработанных пластин по сравнению с исходными, что объясняется наличием в процессе модификации такого явления как распыление поверхности наносящими заряженными частицами.

Детальное исследование отражения (100) и (111) Со и (112) WC позволило выявить, что с ростом напряжения тлеющего разряда происходит снижение искажений кристаллической решетки и изменение постоянной кристаллических решеток Co и WC.

Модифицирующая обработка также приводит к повышению поверхностной твердости пластины на 10 – 15 %.

УДК 620.179.14
СПОСОБ ИЗМЕРЕНИЯ НАПРЯЖЕННОСТИ МАГНИТНОГО ПОЛЯ НА ПОВЕРХНОСТИ ИССЛЕДУЕМОГО ОБЪЕКТА
А.В. КУШНЕР, А.В. ШИЛОВ
Научный руководитель В.А. НОВИКОВ, д-р техн. наук, проф.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

В настоящее время для измерения магнитных полей в непосредственной близости от объекта контроля используют предварительно размагниченные ленточные локальные магнитоносители (ЛМ). ЛМ представляет собой полоску магнитной ленты шириной от 1,5 до 2 мм. При выполнении измерений размагниченный ЛМ располагают на исследуемой поверхности, намагничивают вместе с объектом в поперечном направлении, снимают с объекта, считывая запись вдоль направления поляризации ЛМ, определяют амплитуду сигнала, обусловленного полем, вызванным остаточной намагниченностью магнитоносителя. О величине напряженности поля судят по предварительно построенной градуировочной зависимости.

Однако этот способ не позволяет измерять магнитные поля напряженностью Н<0,4Н (Нкр – критическая сила полоски ленты), т.к. намагничивание ЛМ в слабых полях происходит на начальном (обратном) участке его характеристики. На этом участке происходит упроте смещение границ доменов, магнитоноситель не приобретает остаточную намагниченность, а допустимой, по динамике которой можно судить об измеряемом поле.

Чтобы устранить этот недостаток нам предложено использовать для измерений предварительно намагниченные, не обязательно до насыщения, ЛМ. Как при градуировке, так и при измерении магнитных полей, ЛМ располагают таким образом, чтобы направление измеряемого поля было противоположно направлению поляризации магнитоносителя. Запись поля происходит на ветви частного или предельного цикла гистерезиса, где росту напряженности измеряемого поля соответствует монотонное уменьшение остаточной намагниченности ЛМ. При этом в магнитном поле слабее ЛМ наблюдается необратимое смещение границ доменов. В этом случае проигнорированный ЛМ, из-за отсутствия обратного участка на обратной намагниченности, позволяет измерять и слабые магнитные поля (Н<0,4Н, ЛМ). Так, ЛМ шириной 1,5 мм, изготовленный из ленты типа И4701-35 с критической силой 80 А/см, предварительно намагниченный полем 120 Нкр, дает возможность измерять поля напряженностью Н<30 А/см.
УДК 620.179.14
БЕСКОНТАКТНЫЙ МОДУЛЯЦИОННЫЙ МЕТОД ВИХРЕТОКОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ
И.Е. ЗАГОРСКИЙ
Научный руководитель А.В. ЧЕРНЫШЕВ, канд. техн. наук
Государственное научное учреждение
«ИНСТИТУТ ПРИКЛАДНОЙ ФИЗИКИ НАН Беларуси»
Минск, Беларусь

Вихретоковый вид дефектоскопии основан на регистрации изменений взаимодействия собственного электромагнитного поля катушки с электромагнитным полем вихревых токов, наводимой этой катушкой в объекте контроля. К основным преимуществам этого вида контроля можно отнести высокую производительность (особенно при контроле объектов, представляющих собой тела вращения, например цилиндрической формы: трубы, вальы, оси и т.д. при применении матрицы накладных преобразователей), возможность автоматизации контроля, бесконтактность методов.

В ИИФ разработан вихретоковый дефектоскоп, предназначенный для обнаружения дефектов в чугунных гильзах цилиндров дизельных двигателей. С октября 2006 года с его помощью осуществляется 100 % контроль гильз, изготавливаемых на Минском моторном заводе. Дефектоскоп обнаруживает трещины, раковины, поры, рыхлость в материале гильзы. С августа 2009 года на том же заводе внедрена вторая установка для контроля гильз цилиндров, реализованная на основе бесконтактного модуляционного метода контроля. Основной причиной реализации бесконтактного способа послужил высокий износ рабочей поверхности датчиков (ресурс керамического наконечника датчика составил 3-4 месяца в зависимости от 40 км протяженности контролируемой поверхности). Кроме того, на поверхности гильз часто встречаются раковины с острыми краями, попадание в которые преобразователей приводит к интенсивному износу их рабочей поверхности. Очевидно, что бесконтактный способ лишен проблем выхода датчика из строя по причине износа, однако такому способу присущ ряд недостатков: снижение чувствительности метода к сквозным дефектам, существенное (в 2–3 раза) снижение чувствительности к поверхностным и подповерхностным дефектам (трещинам), практическая невозможность выявления единичных пор, наложение спектрального состава огибающей сигнала от дефекта и спектра от мешающих факторов. Основными мешающими факторами являлись локальные неоднородности объекта контроля и изменения зазора (бienia) между датчиком и контролируемым объектом.

Для уменьшения влияния биений контроль проводится при относительно большой величине зазора, примерно 3–5 мм (в наладке установлено, что сквозные трещины выявляются при зазоре 15 мм), в результате чего небольшие изменения зазора, порядка нескольких десятых миллимента практически не сказываются на величине амплитуды выходного сигнала датчика. Необходимая чувствительность к дефектам при этом достигается за счет повышения амплитудного значения тока возбуждения в преобразователях (приблизительно в 3 раза, до 100mA), что повлекло увеличение мощности потребления второй установки соответственно в три раза. Для отстройки от локальных неоднородностей, применяна микропроцессорная обработка сигнала и сглаживание полосы пропускания дефектоскопа в сторону более высоких частот.

УДК 621.791.763.2
МЕТОДИКА ОПРЕДЕЛЕНИЯ СВАРОЧНОГО ТОКА ПРИ РЕЛЬСОВОЙ СВАРКЕ «ОСТРОЙ ГРАНЬЮ»
Т.И. БЕНДИН
Научный руководитель В.П. БЕРЕЗЕНКО, д-р техн. наук, проф.
Государственное учреждение высшего профессионального образования
«Белорусско-Российский университет»
Могилев, Беларусь

Соединение деталей при рельсовой сварке происходит за счет концентрации сварочного тока в местах соприкосновения деталей по поверхности, ограниченной локальными выступами (рельсами). При этом в процессе сварки происходит непрерывное изменение формы рельса и площади контакта свариваемых деталей.

В качестве характеристики контактного взаимодействия соединяемых деталей (рельсы и пластины) использовались размер колцевой контактной площадки lₖ. Как показали проведенные вычислительные эксперименты, размер lₖ в момент включения сварочного тока не превышает 1 мм. Это обеспечивает высокое начальное контактное электрическое сопротивление и большую плотность тока, что приводит к возникновению вероятности появления такого дефекта, как выплеск.

Расчет величины сварочного тока произошелся исходя из необходимости обеспечения следующих условий:
– плавное увеличение сварочного тока должно компенсировать малую площадь контакта деталь-деталь в момент его включения;
– нарастание величины сварочного тока должно соответствовать изменению размера lₖ при деформации рельса.

Результаты математического моделирования процесса показали, что фактическая площадь получаемого соединения определяется конечным размером lₖ и зависит от типоразмера бобышки Sₚₐ = 1,05lₖ⁻⁰,⁰₃ + 0,3lₖ⁻⁰,⁰₃, где lₖ – диаметр рельсового отверстия бобышки, мм.

Установлено, что для определения величины сварочного тока в зависимости от диаметра отверстия бобышки следует использовать формулу lₖ = 650d₁⁻⁰,⁰₃ – d₁⁻⁰,₁₃, где d₁ – толщина листа, мм; d₁⁻⁰,₁₃ – коэффициент для учета толщины листа.

Длительность протекания сварочного тока следует выбирать, исходя из следующей зависимости: тₛ = (0,06 + 0,03d₁) – d₁⁻⁰,₁₃. Предложены табличные рекомендации по выбору длительности модуляции тока при реализации процесса сварки на машинах переменного тока.

Таким образом, предложена методика расчета величины сварочного тока, длительности его протекания при сварке «острой гранью» низкоуглеродистых сталей с учетом динамического изменения размеров контактной поверхности в процессе осадки рельса.
УДК 621.791
ВЛИЯНИЕ ПАРАМЕТРОВ РЕЖИМА СВАРКИ ТЕПЛОУСТОЙЧИВЫХ СТАЛЕЙ НА ИХ МАГНИТНЫЕ ХАРАКТЕРИСТИКИ
С.В. БОЛОТОВ, канд. техн. наук; Л.Е. ИВАНОВА
Научный руководитель В.П. КУЛИКОВ, д-р техн. наук, проф.
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилёв, Беларусь

В процессе эксплуатации металлоконструкций, изготовленных с применением сварки, достаточно часто возникают аварийные ситуации, что может быть связано с различными факторами. К числу таких факторов принадлежит нарушение режимов сварки (нарушение параметров сварки, предварительного подогрева и последующей термообработки). В подобных случаях важно выявить отклонение качественных характеристик изделия от требуемых, до сдачи его в эксплуатацию.

Одним из способов, позволяющих выполнить оценку качества сварного соединения, является измерение твердости металла в зоне термического влияния. Недостатком данного метода является высокая трудоемкость его применения и необходимость предварительной подготовки поверхности. Наиболее целесообразно в таких ситуациях использовать косвенные методы контроля механических свойств, например по магнитным характеристикам.

Для получения опытных данных, исследования проводились на теплоустойчивых сталях (15X5M, 12X18H10T), которые широко применяются при изготовлении труб пароперегревателей, трубопроводов и коллекторных установок высокого давления, деталей цилиндров газовых турбин, а также различных крепежных деталей, работающие длительно (50-100 тысяч часов) при температуре до 510 °C.

В процессе исследований производились измерения твердости, коэффициентов H, и градиентов поля остаточной намагниченности в зоне термического влияния образцов, сваренных на различных режимах, с применением и без предварительного подогрева и последующей термообработки. Установлено, что нарушения параметров режима сварки и термообработки приводят к появлению градиента твердости и магнитных характеристик в области сварного шва.

На основе проведенных исследований были выявлены тесные корреляционные связи между твердостью металла и коэффициентом силой (градиентом поля остаточной намагниченности), что позволяет судить о качестве сварного соединения и прогнозировать ресурс работы конструкции.

УДК 685.34.03.017.3
УСТРОЙСТВО ДЛЯ ИСПЫТАНИЯ ДЕФОРМАЦИОННЫХ СВОЙСТВ МАТЕРИАЛОВ
А.П. ДМИТРИЕВ
Научный руководитель А.Н. БУРКИН, канд. техн. наук, доц.
Учреждение образования
«ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»
Витебск, Беларусь

Наиболее важным вопросом производства изделий лёгкой промышленности, в том числе обуви, является вопрос о поведении листовых материалов при формировании различных деталей. Например, плотные детали верха обуви приобретают необходимую пространственную форму путем сложной деформации. Получение из плоской детали необходимой формы может быть осуществлено двумя способами: растяжением и выдавливанием. Первый способ представляет собой растяжение закрепленного по краям материала в радиальном направлении с одновременным изгибалением вокруг формующего пuhanсона, а второй способ состоит в том, что формируемый образец жестко закрепляется в кольцевом зажиме и продавливается поверхностью пuhanсона. В УО «ВГТУ» на кафедре «Стандартизация» разработано и запатентовано специальное устройство для исследования деформационных свойств при формировании листовых материалов. Методика проведения испытаний на данном приспособлении к разрывной машине распространяется на материалы для верха и подкладки обуви, галантерейных и обувных изделий и устанавливает антропометрические свойства материалов двухосным растяжением при формировании сферической или иной поверхностью. При этом форму плоской детали можно придать не только путем выдавливания, но и растяжением, моделируя два различных способа формования: внутренней и обтяжко-натяжной. Образцы для испытания в виде круга диаметром 150 мм отбираются по ГОСТ 938.9-75 из участка материала, предназначенного для испытаний, рядом с образцами для определения предела прочности при одноосном растяжении.

При проведении экспериментов производится контроль величины силы продавливания и высоты перемещения нижнего зажима разрывной машины. С помощью цифровой фотокоррекции и компьютерной обработки полученных изображений деформируемых образцов, определяются геометрические характеристики, а также рассчитываются напряжения в них по высоте перемещения зажимного устройства, приложенному усилию и углу уклона.
Исследование имеет практическую значимость, поскольку установленные зависимости позволяют контролировать качество используемых в промышленности конструкционных сплавов без проведения затратных механических испытаний.

В число задач исследования, помимо прочих, входило выяснение характера воздействия на мультифрактальные параметры такого элемента микроструктуры порошковых сплавов, как поры. Ввиду этого, поиск закономерностей, связывающих мультифрактальные и прочностные характеристики, проводился для сплавов различной плотности – 6,0–7,2х10² кг/м³.

В качестве меры прочности в исследованиях был принят предел прочности при испытаниях на растяжение σₚ, как часто применяется в промышленности рабочая характеристика порошковых сплавов.

При сопоставлении данных мультифрактальной параметризации и механических испытаний были получены зависимости, связывающие упорядоченность Dₚ и предел прочности σₚ. Наилучшие результаты полиномиальной аппроксимации кривыми второго порядка удалось получить для р=7,2х10² кг/м³. Со снижением плотности достоверность аппроксимаций падает, что хорошо отражает коэффициент множественной корреляции. Это значит, что пористость сплава является фактором «шума», снижающим точность мультифрактальной параметризации.

Как выяснилось, на графиках взаимосвязи предела прочности σₚ и упорядоченности Dₚ отражается также смена увеличения. Так, плохо соотносящиеся с моделью при скачкообразном увеличении зависимости для плотностей 6,0х10² кг/м³ и 6,4х10² кг/м³ при увеличении х200 становятся довольно четкими р=0,87–0,94.

Известно, что поры могут влиять на определенные мультифрактальные характеристики, аналогично включением микроструктуры. Это подтверждается обнаруженной в наших исследованиях взаимосвязью пористости (плотности) и параметра однородности f180.
Регуляторы цикла сварки предназначены для задания временных интервалов сварочного цикла, плавного регулирования величины сварочного тока, а также включения и выключения в заданные моменты времени пневматических клапанов сварочной машины.

Отличительной особенностью РКС-801 является то, что в регуляторе введены узлы внешнего дистанционного управления сварочным током и ограничения времени сварки, что позволяет использовать его в замкнутых системах автоматического управления.

Быстродействие - важнейшее требование при построении таких систем, поскольку в течение короткого промежутка времени (порядка 10-3 с) должны быть осуществлены операции измерения регулируемой величины, сравнения ее с заданным значением и выработки управляющего воздействия. При этом в качестве параметров регулирования выступают действующее значение сварочного тока и время его протекания. Требуемое быстродействие и точность при обработке данных и формировании управляющих сигналов достигаются путем использования современной системы сбора данных NI 6221 М, имеющей 8 дифференциальных аналоговых входа и 2 выхода, со средой программирования LabView, позволяющей вырабатывать управляющие регулятором сигналы и одновременно фиксировать мгновенные значения сварочного тока и других параметров режима сварки.

Уровень управляющего внешнего сигнала регулятора 0-10 В при токе потребления до 15 мА, что позволяет изменять сварочный ток от номинального Ie до 0,5 Ie. Для согласования сигналов системы сбора данных и регулятора разработан усилитель. В результате проведённых экспериментальных исследований были получены зависимости сварочного тока от управляющего напряжения.

Отключение сварочного тока осуществляется управляющим внешним сигналом 5 В, при этом подача управляющих импульсов на силовые тиристоры прекращается по истечении периода сетевого напряжения, цикл сварки завершается.

Разработанная система позволяет осуществлять автоматическое управление сварочным током по заданной оператором программе и принудительно завершать цикл сварки при выходе регулируемого параметра за установленные пределы.
УДК 004.9
РАСШИРЕНИЕ ЯЗЫКА ERLANG ДЛЯ ПОДДЕРЖКИ НЕЯВНОГО
РАСПАРАЛЛЕЛИВАНИЯ АЛГОРИТМОВ
В.Э. БАЗАРЕВСКИЙ
Научный руководитель П.Ю. БРАЦЕВИЧ, канд. техн. наук, доц.
Учреждение образования
«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»
Минск, Беларусь

Широкое распространение мобильных компьютеров различного ис-
полнения, и возможность комплектования их типизированными модулями
аналого-цифрового преобразования позволяет создавать малогабаритные
системы, ориентированные на решение задач оценки физических парамет-
ров различных объектов и их качества. Однако следует заметить, что опре-
dеленный класс задач по обработке данных не может быть решен в прием-
лемый промежуток времени применением таких систем ввиду их довольно
ограниченной вычислительной мощности. Для решения этих задач предла-
гается создание централизованного вычислительного кластера. При воз-
никновении подобных задач, данные с таких мобильных систем, могут
быть посланы на кластер, обработаны и пересланы обратно. Параллельное
использование вычислительных возможностей кластера несколькими мо-
бильными системами обеспечивает экономическую целесообразность его
применения.

Для обеспечения эффективной работы кластера представляется ло-
гичным использование специализированных вычислительных сред с под-
держкой параллельных вычислений. Одной из подобных сред является ис-
полнительная среда языка Erlang, имеющего достаточно тесную интегра-
цию с вычислительными средами общего назначения (Java , .Net).

Следует заметить, что данный язык и среда изначально разрабаты-
вались для отрасли телекоммуникаций, поэтому, для решения задач обработ-
ки данных, язык нуждается в расширении для поддержки неявных парал-
лельных вычислений, что достигается за счет параллельного вычисления
входящих аргументов функций. Подобная поддержка уже существует в
языке Lisp2D, но по сравнению с языком Erlang, язык Lisp2D не имеет шир-
окого распространения и не обладает средствами тесной интеграции с
платформами Java и .Net. Принцип работы такого расширения заключается в
том, что в специализированную функцию передаётся словарь с данными,
какие функции должны быть вычислены, аргументы к этим функциям,
выходным параметром является словарь, содержащий результаты парал-
лельного выполнения этих функций.

Таким образом, запись параллельных вызовов становится неявной,
тем самым, повышая уровень абстракции алгоритма и облегчая его пони-
мание.

УДК 621.791.35
ОБОСНОВАНИЕ ВОЗМОЖНОСТИ РЕМОНТА МАГИСТРАЛЬНЫХ
ТРУБОПРОВОДОВ ПАЙКОЙ
Т.С. ЛАТУН
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Значительная часть действующих газо- и нефтеопроводов, действую-
щих на территории Республики Беларусь и Российской Федерации, экс-
плуатируется с 70...80 годов прошлого века. За это время полимерные
изоляционные покрытия труб в значительной степени утратили свои изо-
ляционные характеристики, что привело к развитию коррозионных про-
цессов. Поэтому ремонт таких трубопроводов в настоящее время пред-
ставляет собой актуальную задачу. Особенно актуальным является созда-
ние технологий, которые позволили бы производить надежный ремонт без
остановки перекачки продуктов по трубопроводу. Ряд исследователей
предлагает использовать для этих целей сварку, которая в данных услови-
ях связана с целым рядом ограничений.

Для устранения указанных ограничений и повышения безопасности
при выполнении таких ремонтных работ на действующем трубопроводе
предлагается использовать пайку. Проведенные расчеты прочности и ана-
лиза зависимости механических свойств материалов для труб от температу-
ры позволяют сделать вывод о том, что термическое воздействие, харак-
терное для низкотемпературной пайки (T ≤ 300 °С) позволяет проводить
ремонтные работы без снижения рабочего давления, а ограничения по ос-
таточной толщине практически такие же, как и для комнатных темпера-
тур.

Использование пайки для ремонта трубопроводов связано с установ-
кой накладок, которые при работе под внутренним давлением обеспечи-
вают полное восстановление эксплуатационных характеристик. При этом
нагрузка на накладные швы не превышает допускаемых напряжений для лег-
kолавных припоев на основе системы кадмий-цинк. Последнее обстоя-
тельство обусловлено тем, что припои имеют значения модуля упругости,
которые более чем в 3 раза ниже, чем модуль упругости применяемых ста-
лей. Это обеспечивает податливость накладного шва и его совместная дефор-
мация с основным материалом под действием приложенного давления
происходит при незначительных напряжениях.

Важным преимуществом предлагаемой технологии ремонта является
высокая коррозионная стойкость припоя на кадмевой основе, что обес-
печивает и соответствующую коррозионную стойкость трубопровода по-
сле его ремонта.
УДК 621.791
ПРИМЕНЕНИЕ ГАЗА МАФ (МЕТИЛАЦЕТИЛЕН-АЛЛЕНОВАЯ ФРАКЦИЯ) В СВАРОЧНОМ ПРОИЗВОДСТВЕ
А.В. ЛИПКОВА
Научный руководитель В.П. КУЛИКОВ, д-р техн. наук, проф.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Работы ряда исследовательских институтов и многих предприятий показали, что замена ацетилена другими генераторами технически возможна и экономически оправдана. Во ВНИИгвотехмаш были проведены испытания пригодности горючего газа МАФ для выполнения всех видов работ по газопламенной обработке металлов.

Газ МАФ имеет более мягкое пламя по сравнению с ацетиленом, что дает преимущество при работе с металлом малых толщин, с цветными металлами, а также при контурной резке деталей и газопорошковой наплавке металла. МАФ обладает температурой эффективной зоны пламени, близкой к температуре пламени ацетилена (2927 °С по сравнению с 3087 °С у ацетилена). МАФ хранится и транспортируется в стандартных баллонах и цистернах для пропана.

При использовании газа МАФ применяется та же аппаратура, что и при использовании ацетилена для газопламенной обработки металлов. Ниже приведено, что все существующие горелки и резаки, основанные на инжекторном принципе перемешивания газа МАФ с кислородом, не обеспечивают необходимый процесс сжигания газа. Для получения требуемого свойств пламени целесообразна обработка полученной в горелке инжеционного типа смеси газа МАФ с кислородом ультразвуком.

Газ МАФ является побочным продуктом этиленового производства. Существенным преимуществом всех получаемых в данном процессе газов является отсутствие в них серосодержащих и других вредных примесей.

Стоимостные сравнительные показатели в денежном выражении газо-сварочных работ при работе на ацетилене и газе МАФ существенны. Это подтверждается практическими результатами: 4 баллона ацетилена заменяет 1 баллон газа МАФ весом 21,2 кг (емкость баллона ацетилена 5,5-6,6 кг газа). Исходя из указанных компонентов может быть рассчитана эффективность внедрения газа МАФ.

Практика показала, что для использования газа МАФ при сварке ответственных конструкций, подлежащих сдаче Госпромналзору, должны быть проведены дополнительные исследования и доработка сварочной аппаратуры.
Одним из основных критериев при проектировании асинхронных электродвигателей является обеспечение температурного режима.

Для интенсивного отвода тепловых потерь на валу электродвигателя устанавливается вентилятор. В случае со стандартным асинхронным электродвигателем существуют уже отработанные методики расчета тепловых и вентиляционных режимов.

Для интенсивного отвода тепловых потерь у электродвигателей по конструктивной схеме ДАС используются уже два или четыре вентилятора: один (два) основных и один (два) вспомогательных. Основной(ые) вентилятор(ы) закреплены(ы) на силовом роторе, вспомогательный(ые) – на валом.

Поскольку эти электродвигатели иной конструкции, то методика, применяемая при расчёте тепловых и вентиляционных режимов стандартных асинхронных электродвигателей, уже не применима, несмотря на то, что данное семейство электродвигателей основано на серии АИРС. Но как в случае электродвигателей стандартного исполнения, так и вышеуказанных электродвигателей, расчет тепловых и вентиляционных режимов производится раздельно, с последующим сравнением расчетов и дальнейшей коррекцией, что вносит ряд погрешностей и неточностей при проектировании. Поэтому требуется комплексная методика, дающая возможность производить тепловой расчет в функции вентиляционных режимов, отображающей реальную зависимость температур перегрева от условий охлаждения.

Предлагаемая методика расчета тепловых и вентиляционных режимов основывается на внешних аэродинамических характеристиках. В ее основе лежит эталонная внешняя аэродинамическая характеристика. При расчете тепловых и вентиляционных режимов строится действительная внешняя аэродинамическая характеристика, после чего происходит сравнение двух точек теплового равновесия. Далее согласно метода градиента происходит коррекция вентиляционной сети или параметров тепловых режимов, и строится новая внешняя аэродинамическая характеристика. Процесс пере-расчета и коррекции происходит до тех пор, пока точка теплового равновесия будут соответствовать друг другу с достаточной степенью точности.
Проведенные ранее исследования не раскрыли полностью технологические возможности рельефной сварки из-за недостаточно точного определения взаимосвязи между такими параметрами режима сварки как величина и время протекания сварочного тока, усиление сварочных электродов, геометрические характеристики рельефа и характеристиками перемещения подвижного электрода в процессе сварки.

Для контроля качества контактной рельефной сварки в качестве измеряемого параметра рекомендуется использовать величину и скорость перемещения подвижного электрода. Отслеживается взаимосвязь между скоростью деформации рельефа и качеством формирования сварного соединения.

Известные методы моделирования термодеформационного процесса рельефной сварки имеют ограниченную область применения, так как они не учитывают действия переменного тока на характер перемещения электродов. Поэтому для оптимизации параметров режима рельефной сварки необходимо решить следующие задачи.

1. Провести обзор всех ранее проведенных исследований поставленных данной проблеме.

2. На базе существующих методов моделирования процесса рельефной сварки разработать пошагово-совмещенную математическую модель, позволяющую определить взаимосвязь между основными характеристиками перемещения подвижного электрода и параметрами режима сварки.

3. Провести экспериментальные исследования, позволяющие оценить адекватность полученной математической модели.

4. Разработать на базе исследований специальные электродные и другие устройства для осуществления технологического процесса рельефной сварки, обеспечивающего за счет измерения и стабилизации характеристик перемещения искключение дефектов типа выплески и непровары, и получение требуемых прочностных характеристик сварных соединений.

Могилев, Беларусь

УДК 621.3
ЭЛЕКТРОПРИВОД СИСТЕМЫ ПОДВИЖНОСТИ АВТОМОБИЛЬНОГО ТРЕНАЖЕРА
А.М. САВЕЛЬЕВ
Научный руководитель В.Н. АШАНИН, канд. техн. наук, проф.
Государственное образовательное учреждение высшего профессионального образования
«ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
Пенза, Россия

Требованиями к современным автомобильными тренажерами (AT) в настоящее время весьма жесткие и перекрывают все имеющиеся нужды средствами одной лишь компьютерной графики невозможно. Современные AT должны включать в себя помимо средств «визуальной симуляции» средства «чувствительной (перегрузочной) симуляции». Если обучать кого-нибудь на чисто компьютерных тренажерах, всегда есть и будет опасность подготовки не реальных, а «виртуальных специалистов», неспособных к профессиональному выполнению реальных задач.

Исходя из требования подобий автомобиль и тренажера, была разработана структурная схема автомобильного тренажера, нацеленного на конкретную модель автомобиля и полностью имитирующего внутрикабинную обстановку данной модели автомобиля. Наиболее целесообразной для построения системы подвижности была признана электромеханическая система с использованием линейных электродвигателей, т.к. при обеспечении необходимых динамических характеристик подобная система, по сравнению с гидравлическими и пневматическими, имеет ряд преимуществ, таких как: меньший вес, компактность, меньшая потребляемая мощность при сохранении скоростных характеристик, уход от сложной системы управления гидравлическим (пневматическим) приводом. Кроме того, сохраняется важнейшее преимущество использования только энергии электромагнитного поля для управления AT.

Для обоснования выбора данного схемного решения в программной среде Simulink пакета Matlab разработана виртуальная модель электропривода системы подвижности AT. Результаты моделирования показали, что привод достаточно точно отрабатывает заданное линейное перемещение, выполняя полный ход подвески за 0,15 с, с максимальной скоростью перемещения 1,5 м/с, поддерживая статическое усилие, обусловленное силой тяжести тренажера, и создавая рассчитанное максимальное динамическое усилие в моменты перемещения. ШИМ-пulsации регулируемых величин незначительны и будут сглаживаться инерционностью механических частей подвески AT.
Датчик положения ротора (ДПР) в схеме вентиляторного электропривода (ВИП) применяется для управления силовым полупроводниковым преобразователем. Устранение ДПР, усложняющего конструкцию ВИП и снижающего его надежность, является актуальной и широко обсуждаемой проблемой. Исключение ДПР перекладывает задачи определения координат и текущих параметров двигателя на систему управления, что ведет к значительному ее усложнению. В докладе рассматривается возможность использования дискретного преобразования Фурье (ДПФ) и математического аппарата искусственных нейронных сетей (ИНС) для организации движения бездатчикового ВИП.

В основу организации движения бездатчикового ВИП положен следующий алгоритм:
1) в процессе управления осуществляется выборка изменяющегося фазного тока при детерминированном алгоритме изменения нитающего фазного напряжения;
2) с использованием ДПФ формируется частотный образ состояния ВИП;
3) ИНС по частотному образу идентифицирует параметры движения.

Алгоритм используется в замкнутом контуре совместно с регулятором, который сопоставляя вектор идентифицированных параметров движения, вычисляет управляющие воздействия для поддержания требуемых параметров движения и синхронизации управляющих воздействий с положением ротора.

В пакете компьютерной математики в соответствии с описанным алгоритмом управления составлена модель бездатчикового ВИП для расчета устанавливавшихся состояний и переходных процессов.

Разработка программного обеспечения с помощью интегрированной среды проектирования показала целесообразность реализации задачи управления между программной и аппаратной частями. Программная часть состоит из нескольких подпрограмм, вызываемых по мере необходимости, и реализуется с использованием микропроцессорной техники.

Компьютерное моделирование и анализ работы программного обеспечения позволили сделать вывод о работоспособности предложенного алгоритма управления бездатчиковым ВИП.
УДК 621.9
ЗАВИСИМОСТЬ КОЭРЦИТИВНОЙ СИЛЫ МЕТАЛЛА СВАРНЫХ ТРУБОПРОВОДОВ ОТ СТЕПЕНИ НАВОДОРАЖИВАНИЯ

Р.С. ХЛЫСТУНОВ
Научный руководитель В.П. КУЛИКОВ, д-р техн. наук, проф.
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Нефтеперерабатывающие предприятия являются одними из наиболее опасных производственных объектов промышленности, на которых получают, используются, перерабатываются и транспортируются большое количество опасных веществ, и, как правило, они располагаются вблизи крупных населенных пунктов.

Если не брать в расчет случайные повреждения и нарушение условий эксплуатации, то, по статистике, основной причиной, приводящей к повреждениям трубопровода является коррозия, или более точно – ухудшение структуры. При эксплуатации практически у любого трубопровода с течением времени наблюдается ухудшение механических свойств. Так что же происходит с металлом в процессе эксплуатации?

Исследования показывают, что к причинам повреждения "химического оборудования относятся: межкрystalличная коррозия, общая поверхностная и язвенная коррозия, серводородное расслоение, коррозионное растрескивание под напряжением, коррозионно-щелочное растрескивание, тепловая хрупкость, образование и развитие макродефектов, получечность, сфероидизация перлита и графитация структуры.

Характерной особенностью является то, что на большинство из перечисленных факторов прямое или косвенное влияние оказывает водород, содержащийся в транспортируемых веществах. От него происходит: сульфидное коррозионное растрескивание, внутреннее расслоение с образованием поверхностных пузырей, водородное растрескивание, водородное окруживание, облудероживание, водородное расслоение.

Водородное поражение металла происходит следующим образом:

- атомы водорода начинают взаимодействие с поверхностным слоем металла;
- положительный ион водорода забирает электрон от металла;
- атомы водорода проникают в металл и там связываются с атомами углерода;
- нарушается структура металла и создается внутренняя напряженность, металл окруживается;

УДК 62-83-52
МОДЕЛИРОВАНИЕ ДВУХДВИГАТЕЛЬНОГО ЭЛЕКТРОПРИВОДА С ОБЩИМ РОТОРНЫМ ИМПУЛЬСНЫМ РЕГУЛЯТОРОМ

Д.О. НАМЁТКИН
Научный руководитель В.А. БАРЫШНИКОВ, канд. техн. наук, доц.
Филиал государственного образовательного учреждения «Высшее профессиональное образования «МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ (Технический университет)»
Смоленск, Россия

Для механизмов передвижения мостовых или колпаковых кранов в ряде случаев целесообразна замена применяемого в настоящее время многодвигательного асинхронного электропривода с обычным реостатным регулированием на многодвигательный асинхронный электропривод с параллельным соединением роторных выпрямителей и общим импульсным регулятором в цепи выпрямленного тока роторов.

В пакете MATLAB/Simulink создана модель, предназначенная для исследования динамических режимов работы электропривода с учетом управляющего взаимодействия между двигателями, изучения влияния параметров системы и внешних факторов, а также для разработки методов коррекции. Модель включает в себя: силовую часть – два двигателя с фазным ротором, у которых роторные выпрямители соединены параллельно и нагружены на общую для них активно-емкостную цепь, шунтируемую коммутатором на базе IGBT транзистора; единую для двигателей замкнутую систему управления с обратной связью по скорости или скольжению и релейным токоограничением; механическую часть.

Механическая часть включает в себя четырехзвенную систему, содержащую моменты инерции двигателей, два редуктора в виде зазоров с упругостью, металлоконструкцию моста крана, представленную упрощенным соединением двух сосредоточенных в точках опор моментов инерции и статических моментов нагрузки. Значения каждой части моментов инерции и нагрузки зависят от положения груза на мосту, их можно задавать явно или косвенно, указав массу крана, двигателей, груза и его положение на мосту. В целях формирования жестких механических характеристик могут быть использованы обратные связи по скорости или скольжению наиболее нагруженного двигателя. В частности, установлено, что лучше статические и динамические показатели обеспечиваются при обратной связи по средней скорости двух двигателей. Для предотвращения больших бросков тока при пуске, в системе предусмотрена функция предварительного подключения статора к сети при разомкнутой роторной цепи.

Разработанная модель позволяет всесторонне исследовать рассматриваемые электроприводы при различных заданных условиях.
Грузоподъёмные установки играют одну из решающих ролей в современной промышленности, механическая часть которых, представляет собой многомассовую систему. Любую установку можно представить в виде двух сосредоточенных масс, соединенных между собой звеном с распределёнными параметрами – канатом, лентой или тросом, к которому крепится полезный груз.

Основная сложность управления заключается в наличии ярко выраженных резонансных свойств, практически исключающих возможность расширения полосы пропускания системы за частоту первого резонанса при нерезонансном регуляторе.

Разработан стенд для исследования электромеханических характеристик систем, который снабжен измерительными устройствами. Для получения информации о координатах электродвигателя используется программируемый комплекс, разработанный ОДО «СТРИМ», которые в дальнейшем перенаправляются в ПЭВМ, где в последующем производится их обработка. Программная часть комплекса основана на комплекте программ StreamServer и CANMonitor, позволяющих фиксировать и сохранять информацию, полученную от сенсорного модуля в режиме реального времени.

Существенной особенностью кинематики механической части привода стенда является то, что, во-первых, в двух точках распределённого упругого элемента имеются жёстко связанные с ним сосредоточенные массы и, во-вторых, распределённый упругий элемент замкнут в колыцо.

Для этой цели применяется электродвигатель постоянного тока ПБС-22 мощностью 850 Вт. Частота вращения электродвигателя регулируется путем изменения напряжения, подводимого к нему напряжения. С этой целью в стенде применен управляемый выпрямитель ЭТ-6, подключенный к сети переменного тока напряжением 220 В, частотой 50 Гц. Анализ полученных данных производится в пакете Matlab, в котором была разработана функция, определяющая амплитудное значение тока.

Резонансные частоты тока и механических колебаний, полученные экспериментально, совпадают с рассчитанными теоретически. Амплитуда колебаний при первом резонансе больше остальных, что подтверждает его наибольшую опасность.

– от действия растягивающих внешних напряжений (от рабочего давления в трубе) поверхностный охрупченный металл растягивается;
– при достижении одной из трещин критических размеров наступает «внезапное» разрушение трубопровода.

Выводом из всего перечисленного может являться следующее: запасы водорода на металл осуществляется по двум, одновременно происходящим путям:

1) ухудшение механических свойств вследствие структурных изменений;
2) каталитизация и участие в большинстве коррозионных процессах.

Таким образом, для диагностирования подобных трубопроводов необходимо некий комплексный метод, учитывающий сразу все факты, влияющие на ухудшение структуры металла.

Одним из таких показателей может являться козырцевская сила. Как показывают исследования, козырцевская сила напрямую связана с наводороживанием металла. Кроме того, наблюдается корреляция козырцевской силы с большинством механических свойств металла.

Тем не менее, взаимосвязь водорода с магнитными характеристиками металла на сегодняшний день является недостаточно изученным вопросом. Распространено представление, что наводороживание стали вызывает появление козырцевской силы и снижение магнитной проницаемости. Однако эти представления относительны, так как наблюдавшиеся явления изменений магнитных свойств зависят не только, а иногда и не столько от водорода, поглощённого металлом, но и от изменений, произошедших с металлом под влиянием водорода, – от появления остаточных напряжений решетки и нарушений её сплошности, обезуглероживания. Кроме того, указанное явление практически не изучено для сталей, используемых для изготовления трубопроводов, предназначенных для транспортировки водородсодержащих веществ в нефтехимической промышленности.

Ряд экспериментов по катодному наводороживанию образцов из стали 15XSM и Стали 20 подтверждает представление о том, что насыщение металла водородом увеличивает козырцевскую силу. Установленные зависимости между козырцевской силой и временем наводороживания показывают плавное увеличение магнитной характеристики в 4-5 раз. Причём, для графика характерно уменьшение угла наклона кривой с течением времени. Указанное явление объясняется появлением напряженного состояния в решётке сплава, обусловленном повышением давления в коллекторах.

Таким образом, воздействие водорода на магнитные свойства стали связано, по-видимому, с двумя процессами, сопровождающими наводороживание: обезуглероживанием и созданием напряженного состояния в объёме металла.
Несмотря на то, что изменение магнитных свойств сталей под действием различных факторов находится в процессе непрерывного изучения, до конца не выяснена природа изменения когерентной силы Нс под действием внешних растягивающих напряжений. Причем исследование данной проблемы имеет как научный, так и практический интерес.

В ранее проведенных экспериментах было установлено, что при растяжении сваренного стального образца в зоне будущего разрушения наблюдается изменение Нс.

Похожее поведение Нс наблюдалось ранее и на стальных образцах без сварного шва, но объясняется оно различными источниками по-разному. Например, в работе В. И. Бородина сделана попытка объяснить наблюдаемое явление с помощью локальной механострекции, вызываемой внешними напряжениями, что в свою очередь приводит к увеличению градиентов напряжений в кристаллах, а как следствие перестроению доменной структуры и перераспределению магнитных фаз. Ф. Н. Дунаев, В. Ф. Новиков и В. Г. Кузев рассматривают микронапряжения, возникающие при нагрузке кристаллов и поликристаллов как фактор влияющий на Нс, а М. С. Бахарев предлагает в качестве причин изменения Нс под действием растягивающих одноосных напряжений рассматривать деформацию доменов и их взаимодействие с магнитостатическими “зарядами’’ на границах зерен, на разрыве сплошности ферромагнитика.

В ходе исследования было установлено, что влияние выше перечисленных факторов необходимо рассматривать в комплексе. На поведение Нс на первичном этапе оказывает влияние перестройка структуры, причем как 180-градусных так и 90-градусных доменов. Далее следует влияние микронапряжений, приводящее к росту когерентной силы, а затем свой вклад вносят деформация доменов.

Таким образом, изучая механизм изменения Нс, можно судить о величине одноосных растягивающих напряжений в сварном соединении. Изучение влияния сложного напряженного состояния на поведение Нс является перспективным направлением исследований и представляет интерес в области неразрушающего контроля.
УДК 004.3
ТЕХНОЛОГИЯ АВТОМАТИЧЕСКОГО СОЗДАНИЯ ТЕКСТОВЫХ
ПРЕДМЕТНО-ОРIENTИРОВАННЫХ ЯЗЫКОВ МОДЕЛИРОВАНИЯ

С.А. АЛЬХОВИК, канд. техн. наук
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Задачу параметрической и структурной адаптации имитационной модели (ИМ) можно решить путем разработки библиотеки базовых компонентов, обеспечивающих построение ИМ на уровне задания структуры модели и параметров компонентов, а также текстового и/или графического предметно-ориентированного языка моделирования (ПОЯМ), позволяющего конечным пользователям самостоятельно вносить изменения в существующие или создавать новые модели в терминах рассматриваемой предметной области. Для автоматического создания ПОЯМ применяется технология, аналогичная технологии «голье объекты» для создания пользовательского интерфейса. ПОЯМ при этом состоит из двух частей, статической и динамической. Первая представляет собой общий для всех предметных областей синтаксические элементы, определяющие способ записи значений параметров, разделителей, идентификаторов и т.п. Вторая определяется спецификой предметной области, при этом грамматические правила генерируются динамически на основе анализа имеющейся библиотеки компонентов модели. На вход транслятора ПОЯМ подается исходный текст модели, задающий ее структуру и значения параметров, и библиотека компонентов. Транслятор формирует полный набор грамматических правил ПОЯМ, после чего осуществляет лексический, грамматический и семантический анализ текста модели и формирует готовую к выполнению модель. Для реализации транслятора используются возможности .NET Framework, а также библиотека классов для построения лексического и грамматических анализатора Irony. Вся информация, необходимая для формирования грамматики ПОЯМ, получается непосредственно из .NET-сборок компонентов модели. Для получения сведений о типах доступных компонентов, их параметрах и т.п. применяется технология отражения (reflection). Семантическая информация хранится в виде атрибутов, которыми при необходимости помечаются классы компонентов модели, их методы и свойства. Проблема снижения быстродействия при использовании технологии отражения решена путем генерирования выполняемого кода в процессе формирования модели с помощью классов пространства имен System.Reflection.Emit.
УДК 629.083
КОМПОНЕНТЫ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ТОРМОЖЕНИЕМ НА ОСНОВЕ АНАЛИЗА СИЛ
А.А. ВОЛОЩУК
Научный руководитель В.А. КИМ, д-р техн. наук, проф.
Учреждение образования
«БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Брест, Могилев, Беларусь
В условиях рыночных отношений одной из основных задач, стоящих перед промышленностью Республики Беларусь, является повышение технического уровня, надежности и конкурентоспособности автомобильной техники. Решению этой задачи способствует создание системы автоматического управления торможением на основе анализа сил.
Принцип силового анализа для определения тормозной силы, развиваемой колесом, был реализован фирмой «Bohinj». В данном принципе используется реактивная штанга, которая связывает ось тележки колеса самолета с его корпусом и позволяет определить тормозную силу, реализуемую колесами.
Разработанный алгоритм регулирования фирмы «Bohinj» работает в режиме ограничения тормозного момента. Алгоритм сравнивает значение тормозного момента, который создает оператор, с моментом, который фактически реализуется колесами. Он позволяет получить точные результаты измерений тормозной силы, не требует алгоритмов, использующих «задатчики». При этом не используется максимальное значение коэффициента сцепления, что не обеспечивает эффективность торможения. К тому же алгоритм нельзя применять в колесных машинах, так как источник первичной информации подвержен влиянию колебаний подрессоренной массы. Этот недостаток может быть устранен путем использования устройств, вмонтированных в штатные системы торможения механизмов, и позволяющих измерять тормозной момент, фактически реализуемый колесом. В этом случае влияние колебаний подрессоренной массы на устройство восприятия будет исключено.
В таком устройстве предлагается использовать бесконтактный индукционный датчик измерения электрических сигналов, пропорциональных тормозному моменту. Данное устройство монтируется в тормозной механизм, что исключает влияние колебаний подрессоренной массы, и даёт достоверную информацию о тормозном моменте, который реализуется колесом в зависимости от условий его сцепления с опорной поверхностью.
Одним из наиболее перспективных путей утилизации промышленных отходов является использование их в производстве строительных материалов, что ведет к экономии средств строительной индустрии.

Были проведены исследования шлаков, образующихся при выплавке серого чугуна. В отходах шлак имеет вид застывшей монолитной массы или глыб по форме шлаковых ковшей. Текстура медленноохлаждённых шлаков плотная, структура — кристаллическая, а цвет от светло-серого до тёмно-серого. Основные доменные шлаки относятся к распадающимся или склонным к распаду, а кислые к устойчивым. Исследованные шлаки относятся к кислым устойчивым. Куски шлака имеют включение металла в виде летников, лома и образцов.

Химический анализ шлака показал результаты удовлетворяющие требованиям стандартов как по экологическим стандартам, так и по содержанию окислов. Дробление шлака было проведено на щековой дробилке. При анализе на гамма-излучения, шлак показал активность 16 мкР/ч, при допустимой норме 20мкР/ч в городских условиях. Удельная активность шлака 360 бк/кг при допустимой норме 750 бк/кг в городских условиях, между зданиями.

После дробления насыпная плотность шлака составляет 1736 кг/м³. После просея навески 2 кг на стандартных ситах, основная масса частиц осталась на сите №5-44 % и №2,5-53 %. При воздействии магнита на шлак из навески в 100 гр к магниту притянулось 58,8 % частиц. Были испытаны образцы стандартных балочек на шлак и щебень в качестве крупного заполнителя. Прочность образцов на шлак в 2,2 раз выше на изгиб и в 1,35 раза выше на сжатие, чем у образцов на щебень. Подвижность смеси на шлаке 1,4 см, а на щебне 0,75 см.

Все вышеперечисленные свойства шлаков обусловливают возможность его использования в качестве заполнителя в сборных покрытиях тротуаров, крыш зданий, пешеходных и садово-парковых дорожек, школьных дворов, благоустройства дворников, парков, скверов и приусадебных участков.

Дальнейшим этапом работы планируется проведение технико-экономического расчёта по эффективности использования шлака в дорожном строительстве и для благоустройства городов.
УДК 629.083
СРАВНИТЕЛЬНЫЙ АНАЛИЗ СТОХАСТИЧЕСКОЙ И ДЕТЕРИМИНИРОВАННОЙ МЕТОДИК РАСЧЕТА ПОТРЕБНОСТИ В КАПИТАЛЬНОМ РЕМОНТЕ АВТОМОБИЛЕЙ ДЛЯ АВТОТРАНСПОРТНОГО ПРЕДПРИЯТИЯ
Ю.А. ГОЛОВЧЕНКО
Научный руководитель С.В. МОНТИК, канд. техн. наук, доц.
Учреждение образования
«БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
Брест, Беларусь

При типовой детерминированной методике расчета согласно «Временного положения о техническом обслуживании и ремонте подвижного состава автомобильного транспорта» или ОНТП-01-91, годовая потребность автотранспортного предприятия (АТП) в капитальных ремонтах (КР) зависит от количества автомобилей в парке, годового пробега одного автомобиля, пробега с начала эксплуатации и скорректированного пробега до КР. При этом все пробеги берутся усредненными и одинаковыми для всех автомобилей.

При стochaстической методике принимается, что пробег до КР, годовой пробег и пробег с начала эксплуатации являются случайными буллумбобинами, которые имеют свои законы распределения. Для определения количества КР для АТП за год по этой методике с помощью метода статистического моделирования на ЭВМ по заданным вероятностным математическим моделям моделируются значения пробегов для каждого автомобиля. Определение потребности в КР заключается в сравнении буллумбы пробега с начала эксплуатации и годового пробега с пробегом до КР поочередно для всех автомобилей в АТП с суммированием полученных результатов.

Для расчета по стochaстической методике выполняется моделирование распределения пробега автомобиля до КР, их годового пробега и пробега с начала эксплуатации до начала рассматриваемого периода с помощью табличного процессора MS Excel. При моделировании распределения пробега выполняется обратная интерполяция интегральной функции нормального распределения с помощью функции табличного процессора MS Excel.

Стochaстическая методика расчета является более трудоемкой. Для получения достоверных результатов необходима статистическая обработка данных, позволяющая выявить закон распределения рассматриваемых величин. Поэтому для технологического расчета АТП целесообразно применять типовую детерминированную методику.

УДК 621.926
ЗАТРАТЫ НА ПРОВЕДЕНИЕ ДЕЗИНТЕГРАТОРНЫХ ТЕХНОЛОГИЙ
Е.А. ШАРОЙКИНА, Д.В. ТИТОВ
Научный руководитель Л.А. СИВАЧЕНКО, д-р техн. наук, проф.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Достаточно грубая оценка затрат на проведение дезинтеграторных технологий позволяет остановиться на цифре 2 млрд. кВт-часов электроэнергии. Во-первых, это соответствует экспертным оценкам многих исследователей, которые принимают для очень многих стран суммарный расход электроэнергии на целый измельчения 5 % от ее общего потребления. Для Беларуси это также корректно, потребление электроэнергии составляет 38 млрд кВт-часов. Во-вторых, по данным наших предприятий расходы кВт-ч/т для наиболее многочисленных производств составляют: цемент – 30,0-45,0; вяжущая часть силикатных материалов – 21,0-22,0; керамика – 32,0-36,0; известняк – 26,0-30,0; зерно – 80,0-100,0; комбикорм – 15,0 и т.д. Включение в эти издержки затрат на сопутствующие процессы: смешивание, уплотнение, обезвоживание или увлажнение, гранулирование, классификация, изменение геометрической структуры и др. только увеличивает энергопотребление, причем, в ряде случаев очень значительно. Таким образом, предлагается итоговая цифра энергоатрат – 2 млрд кВт-часов.

В составе технологического оборудования лидеры самого расточительного использования энергии являются паровые печи. Эти машины за 150 лет своего существования практически не изменились, а их КПД не превышает 1 %. Незначительно превосходят их уровень и другие аппараты, задействованные в дезинтеграторных технологиях – дробилки, мельницы, смесители, механоактиваторы и другие. Очень мало, а во многих случаях и вовсе, не используется потенциал совмещения нескольких функций в одном аппарате – вариативность. Принцип действия технологических машин не учитывает физические и физико-химические эффекты, сопровождающие процессы переработки веществ. Как результат, это колоссальные и, по существу, неоправданные капитальные и эксплуатационные издержки. В итоге, можно констатировать: технологическое машиностроительное выпускает самую несовершенную в мире продукцию.

Авторами частично решаются вопросы по уменьшению электроэнергетических затрат на проведение дезинтеграторных технологий путем создания более совершенной и простой конструкции мельницы, имеющей меньший энергоемкий процесс измельчения и получения качественно нового продукта измельчаемого материала.
Промышленное производство нашей страны характеризуется большой долей затрат на переработку различных материалов: строительного сырья, удобрений, пищевых продуктов, твердого топлива, химических реагентов, множество наполнителей и добавок, всевозможных отходов и т.д. Центральными операциями их переработки являются: измельчение, классификация, смешивание, транспортирование, уплотнение, гранулирование, сушка, обжиг, автоклавная обработка, вакуумирование и т.д.

Из множества технологических пределов остановимся на тех, основу которых составляет процесс измельчения. Их вполне приемлемо называть дезинтеграторными и на такой основе дать комплексную оценку технологической эффективности и технического уровня. Можно с уверенностью утверждать, что в таковой постановке и с такой полнотой охвата эта проблема ранее в Беларуси не рассматривалась.

Анализ дезинтеграционных технологий целесообразно делать по следующей схеме: объемы производства, затраты на проведение, совершенство технологии, уровень оборудования, перспективы развития, стоимость перевозостояния, научный и проектный потенциал, машинностроительная база. С учетом уровня нашего машиностроения и последних событий в мире, ставку следует делать, прежде всего, на собственное научно-технический потенциал.

При значительной доле в нашем народном хозяйстве – машиностроение, транспорт, приборостроение и сельского хозяйства – объемы дезинтеграторных переработок очень велики и оцениваются примерно 100 млн т в год. О достоверности этих цифр можно судить по объемам переработки важнейших продуктов, млн т: производство калийных удобрений – 40,0; цементное сырье, в т.ч. клинкер – 8,0-9,0; щебень гранитный и других видов – 12,0-13,0; доломит – 2,5-3,0; зерно и зернобобовые – 8,0; силикатное производство – 3,5-4,0; ивец – 2,0; твердые бытовые отходы – 3,0; торф фризерный – 2,5; различные промышленные отходы – 2,5-3,0; керамическое сырье – 2,0-2,5; целлюлоза и бумажная масса – 2,0. Итого, примерно, 88,0 – 92,0 млн т в год.
УДК 629.3.021
КИНЕМАТИЧЕСКАЯ ОЦЕНКА РАССЕГЛАСОВАНИЯ УГЛОВ ПОВОРОТА УПРАВЛЯЕМЫХ КОЛЕС МОБИЛЬНОЙ МАШИНЫ
Д.А. ДУБОВИК
Государственное научное учреждение
«ОСООБЕНИМЕНЫЙ ИНСТИТУТ МАШИНОСТРОЕНИЯ НАН Беларусь» Минск, Беларусь

Автором приводится как расчетная схема, так и зависимости, определяющие связи между теоретическими углами поворота, обеспечивающими качение управляемых колес по концентрическим окружностям без бокового скольжения и действительными углами поворота управляемых колес ведущей машины МЗКТ с колесной формулой 8х8 и двумя передними управляемыми мостами. Обсуждаются результаты проведенных исследований, свидетельствующие о зависимости кинематики поворота внутреннего и наружного колес второго и последующих управляемых мостов от направления их поворота из нейтрального положения.

Для характеристики кинематики поворота управляемых колес мобильной машины с несколькими управляемыми мостами обосновывается использование диаграммы углов поворота управляемых колес в виде графической зависимости углов поворота наружного колеса первого управляемого моста, внутренних и наружных колес второго и последующих управляемых мостов от угла поворота внутреннего колеса первого управляемого моста из левого крайнего положения в правое крайнее положение.

В качестве оценочного показателя рассогласования кинематики поворота управляемых колес мобильной машины, в общем случае, предлагается использовать коэффициент, определяемый выражением:

$$K_{\alpha e} = \frac{\max_1 \int \left[\alpha_{\alpha e} - \sum_{i=1}^n \left[\alpha_{\alpha in} - \alpha_{\alpha in} \right] \right] \, da_{\alpha in}}{\max_1 \int \left[\alpha_{\alpha in} + \sum_{i=1}^n \left[\alpha_{\alpha in} \right] \right] \, da_{\alpha in}}$$

где α_{\max} и α_{\max} - максимальные углы поворота внутреннего колеса первого управляемого моста в левое и правое крайние положения; $\alpha_{\alpha e}$ и $\alpha_{\alpha in}$ - теоретические углы поворота внутренних и наружных колес второго и последующего i-го управляемого моста; $\alpha_{\alpha in}$ и $\alpha_{\alpha in}$ - действительные углы поворота внутренних и наружных колес второго и последующего i-го управляемого моста; i - порядковый номер управляемого моста; k - количество управляемых мостов.

УДК 624.012.25:539.37
ЗАМКНУТЫЕ ЖЕЛЕЗОБЕТОННЫЕ РАМЫ ПРИ МАЛОЦИКЛОВЫХ НАГРУЗКАХ
С.В. ФИЛИПЧУК
«НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ВОДНОГО ХОЗЯЙСТВА И ПРИРОДОПОЛЬЗОВАНИЯ» Ровно, Украина

Замкнутые железобетонные рамы широко используются при строительстве промышленных, гражданских зданий и специальных сооружений (мосты, тоннели, пешеходные переходы, опорные системы первых этажей общественных зданий и т.п.). Эти конструкции воспринимают основные нагрузки, которые действуют на здания и сооружения, среди которых давающее большинство имеют повторный характер.

В комплексе экспериментальных исследований работы железобетонных рам при действии малоцикловых нагрузок выполнены три серии опытов с замкнутыми железобетонными рамами (11 рам). Согласно методике проведены экспериментальные исследования, определены механические характеристики бетона и арматуры. Рамы 1P-1K, 1P-2K, 2P-1K и 3P-1K нагружали однократно до разрушения. По этим результатам определялся уровень повторных нагрузок для следующих рам. В процессе испытаний рам измерялись деформации бетона и арматуры, пробой ригелей рам, возможное перемещение опор.

В результате проведенных экспериментов было установлено, что увеличение деформаций при повторных нагружениях, сравнительно с одноразовыми составило 40,6 %, пробой - 37,7 %, а ширина раскрытия трещин - 417,7 %.

При постепенном увеличении уровня малоцикловых нагрузок от 0,35 до 0,8 от разрушающих, на каждом последующем шести циклах заданной нагрузки, наблюдалась стабилизация напряженно-деформированного состояния рам. Увеличение уровня нагрузок, после стабилизации работы рам, приводило к росту как остаточных (до 66,4 %), так и полных (до 55,1 %) деформаций бетона и арматуры, а также увеличению остаточных и полных прогибов ригелей рам. Это увеличение прогибов ригелей достиgło 27.8 %.

Определены доверительные интервалы сходимости при вероятности 0,95, которые свидетельствуют об удовлетворительном сопадении теоретических и экспериментальных данных.

Найден практический метод определения усилий в замкнутых железобетонных рамках, а также метод определения прогибов и ширины раскрытия трещин железобетонных элементов, при действии малоцикловых нагрузок.
Проведенные эксперименты показали, что отнесение цемента к той или иной группе эффективности при пропаривании в известной степени определяется интенсивностью гидратационных процессов, а в конечном итоге — степенью гидратации цемента. При прочих равных условиях, степень гидратации цемента I группы эффективности существенно выше, чем, например, III группы (естественно, при повышенных температурах тверде- ния). Что же это дает для его расчета?

Во-первых, полученные аналитические зависимости, учитывающие группу эффективности при пропаривании, легко встраиваются в уже сущест- вующую математическую модель прогнозирования степени гидратации цемента, разработанную для нормального твердения бетона. Следовательно, изменение степени гидратации цемента в процессе тепловой обработки бетона можно рассчитывать. Во-вторых, знание степени гидратации цемента позволяет прогнозировать прочность бетона, причем с учетом вре- меня твердения. В-третьих, степень гидратации цемента определяет соответственно и его теплозведение, что необходимо для составления досто- верного теплового баланса.

Из сказанного следует — создание математической модели параллель- ного расчета состава бетона и режима его тепловлажностной обработки вполне реально, что и было реализовано автором.

Для инженерных расчетов по данной модели разработан программный продукт, при использовании которого информация вводится посредством слайдеров, списков и других элементов управления, имеющих соответство- вующие технические и логические ограничения. Результатирующая информа- ция выдается непрерывно, но мере изменения влияющих факторов. Варьируя многочисленными факторами включая вид и количество хими- ческих добавок, технолог-теплощик оптимизирует как состав бетона, так и режим тепловлажностной обработки изделий, добиваясь обеспечении не только проектных характеристик бетона, но и минимально возможной суммарной стоимости бетонной смеси и потребленного теплоносителя ис- пользуемого, ямной пропарочной камерой.

Конструкторам хорошо известны такие методы повышения долговеч- ности машин и механизмов, как применение износостойким материалов, создание надежной системы смазки, изоляция грунтовых поверхностей от загрязнения, компенсация износа, применение быстроменных деталей и узлов. Важно иметь методы и средства для оценки технического состояния машин — определение степени их удалежности от предельного состоя- ния, выявление причин нарушения работоспособности, установление вида и места возникновения повреждений и т.п. Эти задачи решаются методами диагностирования. Результаты диагностирования могут быть использова- ны для прогнозирования недостатков объекта и для принятия решений о проведении ремонта или ТО. Новым подходом в решении задачи является описание структур с помощью использования методов фрактальной гео- метрии и применения оценочных параметров теории фракталов.

В настоящее время наиболее распространенных упрощенных элемента- ми в подвесках автомобилей являются листовые рессоры. Исследовалась листовая рессора автомобиля УАЗ-5131. Испытания проводились при на- турном эксперименте на дорогах с различным покрытием, при различных погодных условиях со следующим пробегом: 0; 10000; 30000; 60000; 90000 и 120000 км. Дальней поверхность рессор подвергалась профилографирова- нию. Исследование сложной структуры поверхности разрушения и дефор- мирования твердого тела удобно проводить с использованием оценочных параметров теории фракталов. Для анализа изменения состояния сложных систем может быть применен аппарат теории автоматического регулиро- вания. Анализ полученных результатов показывает, что до 60000 км при- бега поверхность рессор ведет себя как дифференцирующее инерционное звено, то есть происходит изменение шероховатого слоя, а после 60000 км пропет поверхность листа рессоры ведет себя как интегрирующее инер- циональное звено, что обусловлено развитием усталостных микротрешин на поверхности. Зарождение и развитие усталостных трещин листовой рес- соры подтверждается исследованиями при помощи акустической эмиссии.
Влияние наработки с начала эксплуатации и сезона использования на внутрисменный режим работы строительных и дорожных машин

В.В. КУТУЗОВ, Е.В. КУТУЗОВА
Научный руководитель А.И. МАКСИМЕНКО, канд. техн. наук, доц. Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

При организации и планировании работы строительных и дорожных машин (СДМ) важно использовать фактические данные о работе каждой машины из парка. При определении планируемых технико-экономических показателей (годовая наработка, расход топлива, прибыль, эксплуатационная производительность и себестоимость машинно-часа) в настоящее время принимаются усредненные значения коэффициента внутрисменной работы (Кv). Фактические значения данного коэффициента в реальных условиях эксплуатации могут соответствовать значениям от 0,3 до 0,85, т.е. ошибка может достигать 70 %. На практике значения коэффициента Кv определяются путем проведения хронометражей работы СДМ, однако, это длительный и сложный процесс, выполнение которого будет трудоемким для большого парка машин. Для точного планирования можно использовать коэффициент перехода от количества рабочего времени к наработке в машино-часах (Кн). Значение коэффициента находится делением коэффициента внутрисменного использования на коэффициент, учитываемый работу СДМ на холостом ходу. Исследования показывают отклонение значений Кв от Кн в пределах 0–15 %, что более точно, чем использование усредненных данных. Оценка изменений коэффициента внутрисменного режима работы СДМ проводилась на основании обработки карточек учета работы машин за 10 лет и проведении хронометражей в течение года. Проведенный анализ выявил влияние наработки с начала эксплуатации и сезонности проведения работ на значения исследуемого коэффициента. Так, с увеличением наработки с начала эксплуатации СДМ, происходит снижение коэффициента Кв из-за увеличения перерывов на еженедельное техническое обслуживание и сопутствующих ему ремонтов, а также перерывов по конструктивно-техническим и организационным причинам. За 10 лет работы СДМ коэффициент Кv изменялся до 30 %. Изменение в зависимости от сезона пока- зало, что в летний период времени значения исследуемого коэффициента были выше на 10–20 % по сравнению с зимним. Учет данных изменений позволит повысить точность планирования работы СДМ.
УДК 624.014
ОБРАЗОВАНИЕ И ШИРИНА РАСКРЫТИЯ ТРЕЩИН В СБОРНО-
МОНЛИТНЫХ НЕРАЗРЕЗНЫХ ЖЕЛЕЗОБЕТОННЫХ БАЛКАХ
С НЕНАПРЯЖЕННЫМИ И ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫМИ
СТЫКАМИ ПРИ ПОВТОРНЫХ НАГРУЗКАХ

В. В. САВИЦКИЙ, канд. техн. наук
«НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ВОДНОГО ХОЗЯЙСТВА
И ПРИРОДОПОЛЬЗОВАНИЯ»
Ровно, Украина

Проводились испытания балок с различными конструкциями стыков: стык над опорой с ненапряженной арматурой, стык в точках нулевых моментов с предварительно напряженной арматурой и обычным бетоном за-
монолитованием. Образцы испытывали при однократной нагрузке, при по-
вторной нагрузке эксплуатационного уровня (0,6 от разрушающей) с по-
следующим разрушением, с докрупением до расчетного уровня (0,8 от разрушающей) и разрушением до эксплуатационного уровня. Нагружали сосредоточенными силами, приложеными в пролетах балки.
На первом цикле нагружения балок с ненапряженными стыками вели-
чина ширины раскрытия трещин над опорой значительно превосходила про-
летную. При разгруже – трещины полностью не закрывались. Начиная со второго цикла, величина ширины раскрытия трещин над опорой и в
пролетах незначительно возрастили, остаточные их составляющие практи-
чески отсутствовали. На последних ступенях цикла нагружения возобно-
вилось возрастание прироста. При разгружен до начального уровня на-
блудалось возрастание максимальных величин ширины раскрытия трещин
по сравнению с циклом перед нагружением.
На первых ступенях нагружения балок, с предварительно напряжен-
ной арматурой стыков, величина ширины раскрытия опорных трещин бы-
ла значительно меньшей, чем пролетных. На следующих ступенях нагру-
жения значения ширины раскрытия опорных и пролетных трещин начали стремительно приближаться, вплоть до момента разрушения. Повторные нагружен эксплуатационного уровня и, особенно, догружения до расчетно-
го уровня, уменьшили эффект предварительного напряжения арматуры
стыков сборно-монолитных балок.
Повторные нагрузки эксплуатационного уровня увеличивают полную ширину раскрытия трещин на эксплуатационном уровне, по сравнению с однократной нагрузкой в 1,06…1,32 раза, догружения до расчетного уров-
ня увеличивают полную ширину раскрытия трещин на эксплуатационном
уровне в 1,16…2,19 раза.

УДК 626.926
ПРОМЫШЛЕННОЕ ИСПОЛЬЗОВАНИЕ ДРОБИЛОК
УДАРНОГО ДЕЙСТВИЯ С ВЕРТИКАЛЬНЫМ РОТОРОМ

Е. И. КУТЫНКО
Научный руководитель Л. А. СИВАЧЕНКО, д-р техн. наук, проф.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Учитывая проблемы механизации, повышения качества и снижения стои-
мости строительных работ на объектах, разработаны комплексы многофунк-
ционального оборудования с рабочими органами адаптивного действия. Одним
из основных агрегатов является дробилка с вертикальным ротором. Конструк-
ция данного аппарата и грамотное технологическое применение, в сочетании с
прочими агрегатами в составе технологического комплекса, позволяет значи-
тельно расширить технологические возможности комплекса в целом.
Аналит развития дробилок ударного действия с вертикальным ротором по-
зводит прогнозировать их широкое промышленное использование в режиме
тонкого и сверхтонкого дробления, грубого помола, селективного измельчения,
качественного смещивания, механизации, предварительной подсушки и
совмещения в одном цикле ряда перечисленных операций. Дробилки способны
работать на материалах малой и средней прочности твердостью до 6–7 единиц
по шкале Мооса при крутящем моменте до 100мкм и повышенной влажности
в сравнении с аппаратами аналогичного назначения с производительною
0,5–250 тон в час.
Технологические комплексы на основе дробилок ударного действия с вер-
тикальным ротором позволяют судить о высокой технологической эффективно-
сти при переработке различных видов строительных материалов. Особенность
рабочего процесса состоит, прежде всего, в свободном движении материала в
зонах разрушения, что упрощает организацию транспорта продукта. Миними-
зация взаимодействия материала с корпусом рабочей камеры снижает энерго-
емкость и позволяет обрабатывать более влажные продукты.
Широкое использование технологий на основе проходных аппаратов с
вертикальным ротором сдерживается недостаточной изученностью рабочих
процессов и сравнительно невысокой наработкой на отказ элементов ударной
системы при переработке крупнокусковых и высококомпактных материалов.
В настоящее время, благодаря многочисленным исследованиям накоплен
достаточный опыт и имеются все предпосылки для широкого промышленного
внедрения дробилок ударного действия с вертикальным ротором как в составе
новых комплексов, так и на базе старых без значительных капиталовложений.
УДК 629.33
ОПТИМИЗАЦИЯ МОЩНОСТИ АВТОРЕМОНТНЫХ ПРЕДПРИЯТИЙ С ИСПОЛЬЗОВАНИЕМ ТАБЛИЧНОГО ПРОЦЕССОРА MS EXCEL.

Д.А. ЛИНИН, А.А. КАЗЬМИН
Научный руководитель С.В. МОНТИК, канд. техн. наук, доц.
Учреждение образования
«БРЕНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
Брест, Беларусь

Потенциальные экономические возможности капитального ремонта автомобильной техники наиболее полно реализуются на крупных хорошо оснащенных заводах. В условиях крупносерийного автосборочного производства может быть наиболее полно реализован принцип преемственности технологии автомобилестроения и автосборочного производства. Расчеты показывают, что при повышении концентрации производства по ремонту силовых и ходовых агрегатов до 80-100 тыс. капитальных ремонтов в год себестоимость ремонта может быть снижена на 23%. Однако с увеличением программы автосборочного предприятия (АРП) возрастает затраты на транспортирование объектов ремонта.

Целью данной работы является разработка математической модели оптимизации мощности автосборочного предприятия по критерiu минимальных приведенных затрат на единицу продукции, т.е. затрат на ремонт и транспортирование объекта ремонта на автосборочный завод и обратно. Для реализации данной математической модели использовался табличный процессор MS Excel и его функция «Поиск решения». В качестве параметра оптимизации взят годовая программа капитального ремонта АРП. Выполняется поиск минимума целевой функции, которая представляет собой приведенные затраты на единицу продукции. При формировании целевой функции учитывались корреляционные зависимости, связывающие трудоемкость капитального ремонта автомобилей и их агрегатов, стоимость ремонта с массой ремонтируемых изделий и годовой производственной программой, которые получены на основании обработки статистических данных о производственно-хозяйственной деятельности существующих автосборочных предприятий и действующих нормативов.

Расчеты показывают, что при использовании автомобильного транспорта для транспортирования объектов ремонта на автосборочное предприятие и обратно наблюдается минимум целевой функции. При использовании для транспортирования объектов ремонта железнодорожного транспорта целевая функция в целом ухудшается с увеличением годовой программы капитальных ремонтов, что связано с низкой стоимостью транспортирования.

Разработанная математическая модель и прикладная программа используются в учебном процессе при проектировании автосборочных предприятий, а также при проведении лабораторных работ по дисциплине «Научные исследования и решение инженерных задач» у студентов специальности 1-37 01 06 «Техническая эксплуатация автомобилей».

УДК 666.763.42
МАЛОЭНЕРГОЕМКАЯ ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ ЖАРОСТОЙКОГО БЕТОНА.

Г.Н. НЕКРАСОВА
Научный руководитель М.И. КУЗЬМИНКОВ, д-р техн. наук, проф.
Учреждение образования
«МОРОСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. И.П. Шамякина»
Мозырь, Минск, Беларусь.

В последние годы в мировой практике наблюдается тенденция уменьшения энергопотребления при производстве огнеупорных материалов. Это реализуется как в направлении создания принципиально новых огнеупорных композиций, так и в направлении увеличения доли ресурсосберегающих неформованных огнеупоров, к которым относятся жаростойкие и огнеупорные бетоны.

В настоящее время в Республике Беларусь производство огнеупорных материалов отсутствует. Вместе с тем, наличие в Республике Беларусь больших запасов доломита, отвечающих требованиям, предъявляемым к сырью для производства доломитовых огнеупоров, является основанием для разработки новых, малоэнергоемких огнеупорных материалов.

Работы по созданию жаростойкого бетона на основе доломита с улучшенными физико-химическими свойствами, позволяющими использовать бетон при высоких рабочих температурах, впервые в Республике Беларусь были начаты на кафедре ХТМ БГТУ (г. Минск) и продолжаются в УО МГПУ. Исследование выполнено на природном доломите месторождения “Грязево”. При этом решающие факторами стало: получение стабилизированного доломитового клинкера и разработка технологических параметров, обеспечивающих достаточную прочность бетонов при минимально возможном содержании связующего.

На основании полученных результатов был разработан новый технологический процесс получения доломитового клинкера со стабильными при хранении и эксплуатации характеристиками и, при наименьших энергозатратах.

В качестве связующего для получения доломитового жаростойкого бетона авторами был использован полифосфат натрия.

Выполненные к настоящему времени исследования, подтверждают этот факт, что организация производства нового жаростойкого бетона на основе местного сырья с низкой температурой одноэтажного обжига доломитового клинкера позволит не только значительно сократить расход условного топлива на 1 т огнеупора, но и отказаться от дорогостоящего импорта равноценных огнеупорных изделий.
Металлы, применяемые в технике в той или иной мере неоднородны по составу и структуре, поэтому при соприкосновении их с раствором электролита может образоваться непрерывно работающий коррозионный гальванический элемент, в котором более электроотрицательный участок металла выполняет функцию анода и подвергается разрушению. Разность потенциалов получившегося элемента можно оценить, используя уравнение В. Нернста. Обычно, для электрохимических расчетов используют его сокращенную форму, в которой температура присутствует в явной форме, входя в коэффициент след логарифмом. Видимо, в этом одна из причин того, что влияние градиента температуры обычно не учитывается. Авторами исследовано влияние градиента температуры на кинетику электрохимических процессов, протекающих при контакте металлов с агрессивной средой.

В процессе исследования разность электродных потенциалов между электродами из стали 3, погруженными в нагретый и холодный электролиты (NС), измеряли в процессе нагрева одного из сосудов до температуры кипения с последующим охлаждением до комнатной температуры. В ходе проведения эксперимента рассмотрен процесс коррозии как при нагревании, так и при охлаждении. Кинетика протекания катодных и анодных процессов в нагретом и холодном сосудах различаются, поэтому между двумя металлическими пластинами, погруженными в электролит с разной температурой, возникает разность потенциалов.

В процессе нагревания раствора в диапазоне температур от 35 °С до 95 °С плет, практически, линейный рост зависимости напряжения от времени. При достижении температуры кипения 98 °С прекращается рост напряжения и в дальнейшем стабилизируется, так как разность температур становится постоянной.

При прекращении нагрева, среда начинает охлаждаться. В результате теплового перемешивания жидкости, перенос зарядов от пластин к электролитическому мостнику ускоряется. Это объясняет стремительный рост разности потенциалов в первый момент после отключения нагревателя.

При дальнейшем понижении температуры раствора, происходит уменьшение скорости перемешивания жидкости. Это обусловливает постепенное уменьшение возникшей разности потенциалов.
УДК 621.867.8
СТЕНД ДЛЯ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ ПНЕВМОМОЩИНИ

Н.Н. ЛУКАШКОВ
Научный руководитель И.В. ЛЕСКОВЕЦ, канд. техн. наук, доц.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

В области автотракторостроения существует тенденция к созданию различного рода имитационных моделей. На сегодняшний день уже существует множество имитационных моделей пневмоколес. Однако при создании моделей необходима оценка адекватности значений, полученных в результате расчетов и при проведении эксперимента в реальных или лабораторных условиях.

Поэтому, для подтверждения адекватности модели планируется создание экспериментального стенда с помощью которого будет проводиться сопоставление практических и теоретических результатов.

Стенд представляет собой расположенную на роликах конструкцию, к которой шарнирно крепится подвижная рама. На подвижную раму устанавливается колесо и привод, посредством которого момент передается на колесо. Передача момента осуществляется через зубчато-ременную передачу.

Стенд устанавливается в грунтовом канале таким образом, что ролики перекатываются по направляющим в горизонтальной плоскости, когда сила тяги колеса, под действием приложенного крутящего момента, перекатывается по грунту в плоскости. Перекатывание колеса по грунту с предварительно созданными неровностями, позволит создать условия проведения эксперимента близкими к реальным условиям работы машины.

Имитация нагрузки от веса машины, создающей деформацию в радиальном направлении, осуществляется домкратом. А имитация тангенциальной нагрузки осуществляется электродвигателем.

Данный стенд позволит определить не только радиальную и касательную деформацию колеса, но и коэффициент сопротивления качению и площадь пятна контакта колеса с опорной поверхностью. Определение этих величин позволит на стадии проектирования более точно выбирать параметры трансмисии и двигателя, что делает возможным снижение затрат на горючие материалы при эксплуатации техники.

УДК 614.841
КАЧЕСТВЕННЫЙ ПОДХОД ОБЕСПЕЧЕНИЯ ПРОТИВОПОЖАРНЫХ ТРЕБОВАНИЙ К ОБЪЕКТАМ СТРОИТЕЛЬСТВА

Д.В. МИХАЛЬКОВ
Научный руководитель Л.А. СИВАЧЕНКО, д-р техн. наук, проф.
Государственное учреждение образования
«ИНСТИТУТ ПЕРЕПОДГОТОВКИ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ» МЧС Республики Беларусь
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Строительство в настоящее время – это архитектурная выразительность проектуемых и строящихся зданий и сооружений, высокая этажность, функциональность, пожарная опасность и т.д. И эти требования постоянно растут, увеличиваются, шириатся. Возникает вполне естественный вопрос – а есть ли предел этим требованиям, и, что еще более важно, есть ли предел возможности выполнения этих требований строительными материалами и конструкциями с точки зрения обеспечения безопасности людей, зданий и сооружений при пожаре.

Основной принцип противопожарного нормирования может быть применен к строительным материалам и строительным конструкциям современных зданий. Однако формулировка принципа – взаимосвязанный, но недостаточный этап в противопожарном нормировании, так как принцип несёт самый общий характер. Для его конкретной реализации необходим переход к более частным и более конкретным критериям пожаробезопасного применения материалов и конструкций в строительстве.

В Республике Беларусь и за рубежом ведутся работы по созданию комплексного метода оценки уровня пожарной безопасности зданий, где, как правило, учитывается вероятность возникновения пожара, время пожара, плотность дыма, токсичность продуктов горения, показатели пожарной опасности веществ и материалов. При этом количественные характеристики этих факторов представляют собой усредненные коэффициенты, полученные методом экспертных оценок или установленные при анализе статистических данных. Необходимость этого подхода обусловлена значительным разбросом множества случайных факторов, оказывающих влияние на процесс развития пожара.

Если же подойти к проблеме противопожарных требований в современном строительстве с позиций общей комбинаторной теории, то можно заметить, что тема охватывает все возможные случаи и варианты применения комплексных систем обеспечения пожарной безопасности. Каждый из них может быть реализован на основе как опытных данных, так и результатов теоретических исследований.
ПОЛУЧЕНИЕ НОВЫХ КОМПОЗИЦИЙ ДЛЯ ОГНЕЗАЩИТЫ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ

Д.В. МИХАЛЬКОВ
Научный руководитель Л.А. СИВАЧЕНКО, д-р техн. наук, проф.
Государственное учреждение образования «ИНИСТИТУТ ПЕРЕПОДГОТОВКИ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ» МЧС Республики Беларусь
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Проблема огнезащиты строительных материалов, изделий и конструкций на сегодняшний день стоит особенно остро. Современные технологии открывают новые возможности получения и использования на практике высокоэффективных огнезащитных составов, способных обеспечивать требуемый предел огнестойкости и класс пожарной опасности строительных конструкций.

Высокие огнезащитные свойства показали материалы, изготовленные на основе трепела. Например, у стальных колонн, защищенных теплоизоляцией на основе трепела толщиной 10-12 мм, предел огнестойкости составил около 120-150 минут. Таким образом, возникает необходимость исследования образцов композиций на основе природного минерала - трепела месторождения «Стальное» Могилевской области в качестве основного составляющего для получения огнезащитных составов. Поисковые исследования и анализ свойств трепела показывают, что его использование при проектировании составов для огнезащитного покрытия является достаточно эффективным и дешевым.

Действие природного трепела, как разновидности целлюлосодержащих спилцов, на протекание и подавление реакции горения заключается в его уникальных свойствах, обусловленных чрезвычайно высокой дисперсиостью, хорошей теплоизоляцией и огнегуарностью, активной коррозионной способностью и выделением при прокаливании весьма значительного количества углекислого газа. Высокая дисперсность позволяет быстро отбирать тепло из зоны горения, а выделение углекислого газа способствует эффекту разбавления и нейтрализации. Тепловая изоляция и огнегуарность позволяют экранировать зону горения, прерывая доступ кислорода в зону горения.

Становятся возможным рассчитать эффективность действия огнезащитного покрытия на основе трепела. Полученные результаты показывают целесообразность проведения дополнительных исследований возможности использования трепела в качестве основного компонента для получения достаточно эффективного огнезащитного покрытия.

ДУК 614.841

СОВЕРШЕНСТВОВАНИЕ МЕТОДИКИ ОЦЕНКИ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ СТРОИТЕЛЬНЫХ И ДОРОЖНЫХ МАШИН

Д.Ю. МАКАЦАРИЯ
Научный руководитель А.Н. МАКСИМЕНКО, канд. техн. наук, доц.
Государственное учреждение высшего профессионального образования «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Для оценки эффективности использования строительных и дорожных машин (СДМ) используют методику, основанную на определении минимальных приведенных затрат. Впервые этот показатель был введен в 1961 г. в методике определения годового экономического эффекта. Он включал в себя плановую себестоимость механизированных работ и капитальные вложения в сферу производства и эксплуатации машин, приходящиеся на единицу продукции машин или их комплектов. В методике определения экономической эффективности (1977 г.) сохранился показатель минимума приведенных затрат. Его использовали для определения экономического эффекта от внедрения новых машин, сравнения эффективности и совершенствования эксплуатации машин.

Использование показателя минимальных приведенных затрат при оценке эффективности использования машин широко встречается в современной литературе. Однако, в настоящее время, в условиях рыночной экономики предъявляются повышенные требования к точности получаемых результатов.

При определении себестоимости машиночасов эксплуатации СДМ необходимо учитывать наработку с начала эксплуатации, т.к. ее увеличивается ростом затрат на ТО, ремонты, энергоносители и др. показателей. При этом этот режим работы машины изменяется, снижается годовое количество часов рабочего времени СДМ, уменьшается часовая эксплуатационная производительность машины. Кроме того, существующую методику оценки эффективности использования машины необходимо дополнить критериями, учитывающими расход и экономию используемых материалов, которые влияют на себестоимость единицы продукции. Для этого в расчетах используются технология производства, позволяющая экономить время на эксплуатации. В настоящее время, в дорожно-ремонтных работах широко используются высокопроизводительные техники, позволяющие повторно использовать и экономить дорожно-строительные и ремонтные материалы. Однако в существующей методике оценки эффективности используют только материалы и оборудование машин, не учитывают экономию на использовании материалов.

Совершенствование методики оценки эффективности использования СДМ на основе критерия (прибыли от эксплуатации) позволяет определить целесообразность применения машин на любом этапе их использования.

ДУК 625.8

102

75
АЛГОРИТМ ЗАЩИТЫ ОТ АВАРИЙНЫХ РЕЖИМОВ РАБОТЫ ГИДРОМЕХАНИЧЕСКОЙ ПЕРЕДАЧИ КАРЬЕРНОГО САМОСВАЛА

П.В. ПЛЯКИН, Н.Н. ГОРБАТЕНКО, В.В. РЕГИНА

Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилёв, Беларусь

На кафедре «Автомобили» Белорусско-Российского университета со-местно с НТЦ РУП «БелАЗ» ведется разработка системы автоматического управления гидромеханической передачей (САУ ГМП) для карьерных самосвалов грузоподъемностью 45–60 тонн.

Одним из главных требований, предъявляемых к САУ ГМП является наличие алгоритмов защиты от аварийных режимов работы, таких как пробуксовывание фрикциона вследствие его износа, либо недостаточного давления, непредусмотренная комбинация включенных фрикционов, выход из строя электромагнитов исполнительного механизма управления фрикционом, либо недостаточное давление рабочей жидкости в главной гидромагистрали. В создаваемой САУ разработан комплекс защитных функций, позволяющих сохранить общую работоспособность ГМП при возникновении описанных выше неисправностей. В частности, реализован алгоритм контроля состояния фрикционов в процессе переключения передач и после завершения переходного процесса, реализован алгоритм диагностики электромагнитов исполнительных механизмов.

Контроль состояния фрикционов проводится на основании информации, полученной с датчиков угловой скорости входного, выходного, промежуточного валов коробки передач и датчиков давления в каналах управления фрикционами. В случае выявления пробуксовывания фрикциона после переключения передачи, либо непредусмотренной комбинации фрикционов, ЭБУ, в зависимости от ситуации, либо формирует сигнал на включение предыдущей передачи, либо обесточивает электромагниты, либо включает нейтраль в коробке передач. При включении САУ ГМП ЭБУ проводит диагностику электромагнитов и правильность их подключения. Для этого на каждый электромагнит подается тестовое воздействие в течение 0,2 c и по сигналам с датчика давления оценивается работоспособность электромагнита и правильность его установки. В случае отрицательного результата проверки электронный блок управления запрещает дальнейшие действия и формирует информационное сообщение водителю.

Реализация данных алгоритмов позволила существенно снизить вероятность выхода из строя всех ГМП в результате поломки одного или нескольких ее элементов.

ОЦЕНКА КОНКУРЕНТОСПОСОБНОСТИ ДОРОЖНЫХ ПРЕДПРИЯТИЙ С УЧЕТОМ ТЕХНИКО-ЭКСПЛУАТАЦИОННОГО СОСТОЯНИЯ ДОРОГ

И.С. МЕЛЬНИКОВА
Е.В. КАШЕВСКАЯ, канд. техн. наук, доц.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилёв, Беларусь

В настоящее время остро стоит вопрос о возможности дорожных предприятий эффективно производить имеющие рыночную ценность товары и услуги для достижения высокого уровня доходов и отдачи на капитал. Рассматривая преимущества для количественной оценки конкурентоспособности дорожных предприятий (ресурсные, технические факторы и инновационный менеджмент), можно использовать интегральный индекс конкурентоспособности предприятия на рынке дорожно-эксплуатационных услуг.

Расчет указанного выше интегрального индекса осуществляется на основе методических подходов, предложенных доктором экономических наук, профессором Я.М. Александровичем. Так, профессор считает, что к основным агрегированным факторам следует отнести открытие экономики, технологии, труд и менеджмент.

Помимо четырех агрегированных факторов, предложенных профессором Александровичем Я.М., для дорожно-эксплуатационных организаций предлагается учитывать результаты ежегодных исследований, проводимых РУП «Белорусский дорожный инженерно-технический центр» («Белдорцентр»), и применять в качестве пятого агрегированного фактора индекс соответствия параметров, характеризующих технико-эксплуатационное состояние автомобильных дорог, требованиям технических нормативно-правовых актов.

В ходе работы были проанализированы данные исследований РУП «Белдорцентр» за 2008 год для сети автомобильных дорог, обслуживаемых РУП «Могилевавтодор», а также результаты деятельности предприятия по оказанию услуг, технологиям, персоналу и менеджменту. Согласно этим данным, были рассчитаны показатели РУП «Могилевавтодор» по пяти агрегированным факторам, и определен интегральный индекс конкурентоспособности РУП «Могилевавтодор».

Таким образом, данный индекс позволяет оценить насколько эффективно предприятие решает задачу обеспечения конкурентоспособности на рынке дорожно-строительных работ, сохранения рабочих мест и создания качественных условий труда работников.
И.В. Марченкова, Е.С. Семенюк, А.В. Хвелеева
Научный руководитель С.Д. Семенюк, д-р техн. наук, доц.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Разработка способов усиления строительных конструкций и методов расчета в процессе их эксплуатации является одной из важных задач строительной отрасли.

Одним из методов усиления железобетонных плит является усиление с использованием неразрезной, которая заключается в установке дополнительной арматуры на промежуточных опорах с обеспечением ее совместной работы с усиляемыми конструкциями. После установки на промежуточных опорах дополнительной арматуры выполняется замоноличивание швов между торцами плит перекрытий и устройство наращивания. При этом толщина шва между торцами усиливаемых плит перекрытия бывает различной. Бетон, которым выполняют наращивание и замоноличивание швов на неразрезных опорах может отличаться от бетона усиливаемых конструкций прочностными и деформативными характеристиками. Усиление плит перекрытий происходит под нагрузками, минимальной из которых всегда является собственный вес конструкции.

При усиличении железобетонных плит перекрытий и покрытий созданием неразрезности, предметом исследования является прочность, жесткость и трещинностойкость. Необходимость проведения исследований определяется неизученностью данного метода усиления, отсутствием методики расчета, учитывающей влияние напряженно-деформированного состояния конструкции до усиления и особенности деформирования замоноличенного шва между торцами плит на прочность, жесткость и трещинностойкость усиленной конструкции. Из вышеперечисленного следует, что экспериментально-теоретические исследования этих параметров являются важными и своевременными.

Изгибаемые железобетонные многопроездные статически неопределенныые конструкции прогоальной формы рассчитывают при помощи существующих методов строительной механики, при этом учитывают физическую нелинейность их свойств.
Современные автотранспортные предприятия с небольшой численностью подвижного состава (ПС) стоят перед необходимостью выбора формы организации технического обслуживания (ТО) и ремонта (Р) автомобилей, находящихся у них на балансе.

Выбор осуществляется в диапазоне от создания собственной полноценной производственно-технической базы (ПТБ) до аутсорсингового выполнения работ по поддержанию и восстановлению технически исправного состояния парка ПС. В качестве аутсорсеров могут выступать как традиционные АТП, оказывающие услуги сторонним заказчикам, так и сертифицированные станции технического обслуживания (СТО).

При принятии решения о выборе формы организации ТО и Р ПС необходимо учесть влияние следующих факторов:

– структура парка ПС;

– наличие договоров на гарантированное обслуживание;

– является ли ПС собственностью предприятия, или принадлежит по кредитному договору или лизингу;

– какие виды ТО и Р предприятие проводит на своей ПТБ;

– наличие материальных, финансовых, кадровых ресурсов и возможность их приобретения;

– соотношение затрат на создание, поддержание и модернизацию ПТБ и затрат, связанных с ненадлежащим техническим состоянием и др.

Оценка влияния указанных факторов осуществляется посредством анализа целевой функции, представляющей собой многопараметровую функцию изменения суммарных затрат на функционирование зон ТО и Р на работу ПС в зависимости от мощности зон ТО и Р.

Расчет целевой функции осуществляется комплексом прикладных программ на базе GPSS-World, позволяющим моделировать работу ПС на линии и работу зон ТО и Р при различных вариантах организационных форм в течение заданного интервала времени. По результатам моделирования определяются технико-экономические показатели работы для каждого варианта, рассчитывается значение целевой функции и осуществляется определение оптимального варианта по критерию минимума суммарных затрат.

Ключевые слова: автотранспортные предприятия, техническое обслуживание, рестораны, принятие решений, традиционные АТП, аутсорсинг, срочное поступление, межремонтная модернизация, оптимальный вариант.
УДК 625.7
МАТРИЧНАЯ МОДЕЛЬ АНАЛИЗА И ОЦЕНКИ ПРОИЗВОДСТВЕННО-ХОЗЯЙСТВЕННОЙ ДЕЯТЕЛЬНОСТИ ПРЕДПРИЯТИЙ ДОРОЖНОЙ ОТРАСЛИ

В.С. МАРГУНОВ
Научный руководитель Е.В. КАШЕВСКАЯ, канд. техн. наук, доц.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Настоящая матричная модель разработана в целях обеспечения единого методологического подхода к анализу финансового состояния предприятия. Результатом такого анализа является комплексная оценка финансового состояния предприятия, качественная характеристика результатов деятельности, раскрытие внутренних резервов и дальнейших перспектив развития.

Проведение подобного анализа позволяет не только определить платежеспособность и финансовую устойчивость предприятия на момент проведения анализа, но и своевременно сигнализировать о негативных тенденциях в его деятельности.

Источниками информации для анализа деятельности предприятия являются бухгалтерская отчетность, в некоторых случаях, при анализе деятельности контрагентов, возможно использование публикуемой отчетности.

Исходные данные в матричной модели имеют двоякую трактовку: с одной стороны, они являются результатами деятельности (расположены в столбцах матрицы), с другой — представляют собой факторы, влияющие на эти результаты, то есть факторы влияния (расположены в строках матрицы).

Все элементы матрицы, находящиеся в местах пересечения соответствующих строк и столбцов (результативного показателя и фактора влияния), являются качественными показателями (интенсивными факторами) хозяйственной деятельности предприятия. С помощью анализа различных соотношений количественных показателей строк и столбцов матрицы строится система взаимосвязей показателей.

Матричная модель анализа и оценки производственно-хозяйственной деятельности предприятия позволяет дать оценку результатам принимаемых решений, действия руководителей различных уровней, мере контроля управления ресурсами и процессами, а также помогают выявить первые признаки неэффективной работы предприятия.

УДК 629.083
АВТОМАТИЗАЦИЯ ОПЕРАТИВНО-ПРОИЗВОДСТВЕННОГО УПРАВЛЕНИЯ ТЕКУЩИМ РЕМОНТОМ АВТОМОБИЛЕЙ

И.В. СТРАЧУК, П.С. КОЧЦЕВИЧ
Научный руководитель С.В. МОНТИК, канд. техн. наук, доц.
Учреждение образования
«БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
Брест, Беларусь

Процесс оперативно-производственного управления текущим ремонтом (ОПУ ТР) автомобилей состоит из комплекса последовательных операций, составляющих замкнутый технологический цикл, и имеет целью обеспечение выполнения заданий по ТР автомобилей с заданным уровнем качества при минимальных затратах.

Для автоматизации процессов ОПУ ТР было разработано приложение в среде MS Excel, формирующее сюжетно оперативно-производственный план ТР следующим образом:
– ввод исходных данных на основании ремонтного листа. В качестве исходных данных выступает шифр неисправности согласно классификатору проявлений неисправностей;
– на основании шифра производится автоматический поиск наименования неисправности, перечня ремонтно-регулировочных операций, нормативной трудоемкости и типа канала. В зависимости от типа канала определяется количество работающих на посту, коэффициент организованности поста, а также число каналов обслуживания, входящих в состав поста. Информация заносится в «Листок учета ТО и ремонта»;
– составляются диспетчерские и технологические характеристики;
– осуществляется расстановка автомобилей по постам в зависимости от типа неисправности. При этом на постах, где имеются два канала, дополнительно и по каналам. Заполняется «Бланк планирования работ»;
– по результатам расстановки высчитывается суммарное время занятости поста, а затем составляется график ТР, в котором указывается распределение планового времени в соответствии с порядком постановки автомобилей на пост.

Аutomатизация процесса ОПУ ТР позволяет: снизить затраты времени, связанные с планированием работ по ТР; повысить точность планирования; автоматизировать создание и заполнение выходных документов; сократить бумажный документооборот на предприятии; увеличить время хранения отчетной документации; сократить затраты времени на доступ к архивным данным за требуемый период; облегчить принятие управленческих решений.
UDK 629.114.2
ДИАГНОСТИРОВАНИЕ ЗУБЧАТЫХ ЗАЦЕПЛЕНИЙ
ТРАНСМИССИЙ ПО СУММАРНОМУ УГЛОВОМУ ЗАЗОРУ
В.А. СУДАКОВА
Научный руководитель Г.Л. АНТИПЕНКО, канд. техн. наук, доц.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

В настоящее время контроль технического состояния зубчатых зацеплений, определяющих техническое состояние трансмиссии, в основном осуществляется инструментальными методами. Это отражается на трудоемкости получения результатов и точности диагностики. Состояние зубчатых зацеплений оценивается величиной суммарного углового зазора, характеризующего боковой износ зубьев. Для его контроля наиболее целесообразно использование импульсного метода, позволяющего отслеживать относительные угловые перемещения ведущего и ведомого валов.

Механические трансмиссии по данному параметру можно диагностировать на стенде. Гидромеханические трансмиссии, которые не имеют жесткой кинематической связи при неработающем двигателе, исключают такую возможность. Их диагностировать целесообразно в процессе движения. Тестовым воздействием, обеспечивающим выбор суммарного углового зазора, является торможение двигателем. В этом случае выбор суммарного углового зазора в коробке передач происходит всегда, так как величина момента сопротивления в коробке передач - это сопротивление в подшипниках качения и она незначительна, по сравнению с величинами момента двигателя и момента сопротивления передвижения. Выбор зазора в зубчатых зацеплениях трансмиссии, в целом, зависит от параметров динамической системы и внешних моментов. Угловой зазор выбирается, если замедление ведущего вала будет больше чем ведомого. Из этого условия следует, что выбор суммарного углового зазора в трансмиссии зависит от тормозной характеристики двигателя, угловой скорости начала торможения коленчатого вала, передаточного числа коробки передач и от дорожных условий.

В ходе исследований было установлено, что при уменьшении передаточного числа коробки передач начальная угловая скорость коленчатого вала двигателя уменьшается, а при увеличении общего коэффициента сопротивления движению угловая скорость коленчатого вала двигателя возрастает.

Проведенные исследования показали возможность диагностирования гидромеханических трансмиссий по суммарному угловому зазору в процессе движения.

UDK 621.012.45
МНОГОПУСТОТНЫЕ ЖЕЛЕЗОБЕТОННЫЕ ПРЕДНАПРЯЖЕННЫЕ ПЛИТЫ. ИЗГОТОВЛЕННЫЕ С ПРИМЕНЕНИЕМ ПЕСКОВ ОТРАБОТАННЫХ ФОРМОВОЧНЫХ СМЕСЕЙ
А.В. ЛОБОВ, Е.М. ПРИХОДЬКО, И.С. СЕМЕНЮК
Научный руководитель С.Д. СЕМЕНЮК, д-р техн. наук, доц.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
«НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ВОДНОГО ХОЗЯЙСТВА И ПРИРОДОПОЛЬЗОВАНИЯ»
Могилев, Беларусь, Ровно, Украина

В качестве мелкого заполнителя бетонов для многопустотных железобетонных преднапряженных плит используют природный кварцевый песок. Однако многие районы нашей страны испытывают дефицит природных песков, относящихся действующим стандартам. Этот дефицит можно ликвидировать, используя в качестве мелкого заполнителя пески отработанных формоформенных смесей литейно-металлургических производств.

Промышленные предприятия городов Могилева, Луцка, Ровно, имеющие литейные производства, ежегодно вывозят в отвалы большое количество отработанных песков формоформенных смесей, в химический состав которых входит 88…96 % SiO₂. Зерновой состав и модуль крупности отработанных песков формоформенных смесей соответствует нормам для приготовления бетонов многопустотных железобетонных преднапряженных плит.

Для определения возможности использования отработанных песков формоформенных смесей необходимо провести экспериментально-теоретический подбор составов бетонов, в которых в качестве мелкого заполнителя применить пески отработанных формоформенных смесей. Крупным заполнителем служит гранитный щебень соответствующих фракций.

Контроль прочности предлагаемых бетонов подтвердил возможность использования песков отработанных формоформенных смесей при производстве многопустотных ж/б преднапряженных плит.

Испытание плит, изготовленных в промышленных условиях, на основе песков отработанных формоформенных смесей, показано, что они соответствуют ГОСТ 1028-94.
А.И. КОРНИЙЧУК
«НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ВОДНОГО ХОЗЯЙСТВА И ПРИРОДОПОЛЬЗОВАНИЯ»
Ровно, Украина

При эксплуатации или реконструкции существующих зданий и сооружений значительное количество железобетонных конструкций и их элементов испытывают действие малоциклических знакопеременных нагрузок разного уровня. Малоциклические знакопеременные нагрузки и деформации возникают в элементах конструкций силосов и бункеров, неразрезных балок монолитных железобетонных перекрытий, колонн и ряда промышленных зданий, в предварительно напряженных железобетонных конструкциях, зданиях при аварийных ситуациях и т.п.

Для изучения влияния малоциклических знакопеременных нагрузок на прочность и трещинностойкость наклонных секций изгибаемых железобетонных элементов проводились экспериментальные исследования работы железобетонных балок номинальными размерами 100х160х2000 мм (всего было испытано 25 балок). В процессе испытаний измерялись деформации бетона нормальных и наклонных сечений, деформации поперечной и продольной арматуры, прогибы балок.

В процессе экспериментальных исследований изменили следующие параметры:
- класс бетона образцов (B20, B25 и B15);
- характер поперечного армирования: хомуты Ø4 мм Вр-1 с шагом sх=75 мм; хомуты Ø3 мм Вр-1, sх=45 мм; отгиб Ø5 мм Вр-1, sх=135 мм;
- пролет среза (600, 450 и 300 мм);
- уровень знакопеременной нагрузки (σ=0,5/0.8 Fп; 0,65/0.8 Fп).

В результате проведенных экспериментов было установлено, что малоцикловая знакопеременная нагрузка снижает прочность наклонных сечений на 5-25 %; уменьшает поперечную силу, при которой образовываются наклонные трещины, на 10-22 % и увеличивает их количество, длину и ширину раскрытия в 1,5-4 раза; а также увеличивает величину прогибов балок в 1,1-1,2 раза в сравнении с одноразовой статической нагрузкой.

Предложены усовершенствованные методики расчета прочности наклонных сечений, образования и ширины раскрытия наклонных трещин при действии малоциклических знакопеременных нагрузок, которые дают удовлетворительную сходимость результатов с экспериментальными данными.

УДК 621.85
ДИАГНОСТИРОВАНИЕ ТРАНСМИССИЙ МАШИН НА СТАЦИОНАРНЫХ СТЕНДАХ
М.Г. ШАМБАЛОВА
Научный руководитель Г.Л. АНТИПЕНКО, канд. техн. наук, доц.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Современные подходы в области определения технического состояния транспортных средств заключаются в создании средств оперативного и нормативного диагностирования на основе электронной и компьютерной техники. Это создало потребность в новых методиках диагностирования, новом диагностическом оборудовании, значительном объеме сервисной информации. Для удовлетворения таких потребностей разрабатываются новые диагностические средства – бортовые, устанавливаемые на машине и являющиеся частью электронных блоков управления (ЭБУ) и небортовые – внешние средства диагностирования.

Учитывая, что трансмиссии строительно-дорожных, тяжелых тяговых и транспортных машин достаточно сложны, и трудоемкость восстановительного ремонта высока, то необходимость компьютерной диагностики трансмиссии не вызывает сомнений. Однако бортовые компьютерные системы являются неэффективными при диагностировании трансмиссии. Поэтому проектирование стационарных компьютерных систем диагностирования является актуальной задачей.

Техническое состояние зубчатой передачи оценивается по величине суммарного углового зазора и по кинематической неравномерности вращения выходного вала. Измерение величины кинематической неравномерности целесообразно проводить на нерабочей машине, чтобы исключить влияние двигателя и других элементов на точность показаний.

В настоящее время для оценки состояния тормозных систем широко применяются роликовые тормозные стенды, которые являются основой линии инструментального контроля. При оснащении роликового стенда необходиным набором датчиков возможно его применение и для диагностик трансмиссии. Для адаптации трансмиссии мобильных машин к компьютерной диагностике они должны быть оснащены небольшим числом датчиков, позволяющих однозначно оценить техническое состояние элементов.

Разработана методика выявления единичных дефектов, оценки их величины и местоположения применительно к стационарным тормозным стендах.

96

УДК 624.012.25:539.431:539.3
ПРОЧНОСТЬ И ТРЕЩИНОУСТОЙЧИВОСТЬ НАКЛОННЫХ СЕКЦИЙ ИЗГИБАЕМЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПРИ ДЕЙСТВИИ МАЛОЦИКЛИЧЕСКИХ ЗНАКОПЕРЕМЕННЫХ НАГРУЗОК
В работе рассматривается разработанное в среде программы 3D Studio Max программное обеспечение формирования анимационной картоты движения автомобиля по результатам имитационного моделирования. Имитационная модель получена на основе плоской расчетной схемы его курсового движения и пространственной схемы вертикальной динамики. При формировании математических моделей были приняты следующие обобщенные координаты: перемещения центра масс автомобиля по продольной и поперечной оси и его курсовой угол; вертикальные перемещения центра масс автомобиля и центров его колес; угловые перемещения остова автомобиля вокруг его центральной продольной и поперечной осей.

Имитационное моделирование проводилось с использованием специального программного обеспечения и с учетом микропрофиля дорожной поверхности. Результаты моделирования в виде массива численных значений в фиксированные моменты времени сохраняются на жестком диске в виде текстового файла с расширением .txt.

Формирование анимационной картоты движения автомобиля проводилось с помощью разработанного программного обеспечения на языке Max Script в среде программы 3D Studio Max, выполняющее визуализацию процесса движения автомобиля в соответствии с результатами имитационного моделирования.

В качестве входных данных для визуализации движения автомобиля используются дополнительно разработанные графические файлы с расширением .max образов автомобиля и его колес; а также текстовый файл с расширением .txt, содержащий параметры движения, полученный в результате имитационного моделирования.

Таким образом, разработана информационная технология визуализации и анализа результатов проектирования автомобиля, включающая комплекс программных средств имитационного моделирования и формирования анимационной картоты курсового движения по различным категориям дорог.

В проводимом авторами исследовании решается задача нелинейной теории упругости (плоская деформация): линейно-упругая плита на нелинейно-упругом неоднородном основании, ослабленном биогенными включениями. Каждая слой грунта и биогенные включения описываются как нелинейно деформируемая неоднородная среда.

За неизвестные принимаются: $u(x,t),\ v(x,t)$ — компоненты вектора перемещения t-той узловой точки основания; $p^e_i(x,y)$ — реактивные давления в зоне контакта балочной плиты с основанием. Границные условия задачи: на границах принятой расчетной области перемещения $u=0, v=0$; в контактной зоне справедливо равенство осадок основания прергабам плиты.

В алгоритме нелинейного расчета применяется метод упругих решений А. А. Ильюшина. Вычисление неизвестных каждой итерации осуществляется при помощи касательного модуля деформации. В законе нелинейно-упругого деформирования основания используется степенная функция, в сравнении с функцией гиперболического тангенса, исследуемой ранее в работах С. В. Босакова, О. В. Козуновой.

Решение краевой задачи строится в перемещениях и реализуется методом конечных разностей (МКР), то есть заменой дифференциальных уравнений линейными конечно-разностными соотношениями. Энергия деформаций упругого основания получается суммированием по объему основания энергий деформаций прямогоугольных участков для каждой ячейки МКР. В результате система дифференциальных уравнений заменяется системой линейных алгебраических уравнений (СЛАУ).

Для реализации указанного подхода составлена программа на языке Mathematica 6.0, проведена ее числовая апробация для двухслойных оснований с учетом биогенных включений, для разных законов деформирования основания.

Результаты расчета показали, что процесс получения решений сходится быстрее с использованием функции гиперболический тангенс, однако скорость и точность вычисления выше с использованием степенной функции.
СИСТЕМА ПРОГНОЗИРОВАНИЯ МОРЗОТОЙКОСТИ БЕТОНОВ

С.Н. КОВШАР
Научный руководитель В.В. БАБИЦКИЙ, д-р техн. наук, проф.
Учреждение образования
«БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
Минск, Беларусь

Анализ существующих методов прогнозирования морозостойкости и коррозионной стойкости бетонов показывает, что из известных методов наибольший интерес (с позиции прогноза сроков службы бетона в реальных эксплуатационных условиях) представляют те, которые основаны на установлении связи между морозостойкостью и структурными характеристиками материала, а также на моделировании математическими зависимостями процессов, происходящих в материале при попеременном замораживании и оттаивании или воздействии коррозионной среды. Остальные группы методов, базирующихся, например, на ужесточении воздействий или использовании нескольких критериев, являются менее предпочтительными, поскольку либо достаточно трудоемки, либо требуют использования уникального оборудования, хотя точность прогноза при этом существенно не повышается. Практически все предлагаемые модели прогноза морозостойкости (или коррозионной стойкости) бетона основываются на рассмотрении преимущественно деструктивных процессов без учета, так называемых конструктивных процессов. В то же время, положительная роль конструктивных процессов не отрицается, например, показана положительная роль при обеспечении морозостойкости эффекта «самозамерзания» бетона, который связывают с продолжающейся гидратацией вяжущего. В тех моделях, где возможен учет влияния конструктивных процессов, им отводится роль фактора, искажающего характер разрушения материала при циклическом замораживании и оттаивании и действии коррозионной среды.

Изложенное выше приводит к выводу, что разработка достоверной методики прогнозирования морозостойкости возможна только при совместном учете влияния конструктивных и деструктивных процессов на структурно-механические свойства бетона. Влияние каждого из процессов может быть учтено путем изучения кинетики протекания этих процессов.

В настоящий момент, на основании опытных данных по изучению влияния циклического замораживания и оттаивания на структурно-механические характеристики цементного камня, автором разрабатывается система прогнозирования морозостойкости бетона, позволяющая совместно учесть влияние конструктивных и деструктивных процессов.

УДК 691.32

Действующие нормы по проектированию деревянных конструкций не учитывают влияние малоцикловых нагрузок на изменение физико-механических свойств материалов и несущую способность неразомкнутых соединений. Также нормы не учитывают реальное изменение напряженно-деформированного состояния в неразомкнутых соединениях, поскольку этот вопрос как теоретически, так и экспериментально не достаточно изучен. Все это говорит о необходимости установить влияние малоцикловых нагрузок на работу неразомкнутых соединений деревянных конструкций.

Испытания прочности неразомкнутых соединений на малоцикловые нагрузки проводились на образцах изготовленных из сосных досок при влажности древесины 12 %. Исследования гвоздевого симметричного соединения при работе накладки на изгиб и деформировании соединения вдоль волокна проводилось для установления малоцикловой выносливости. Для моделирования совместного действия постоянной и кратковременной ветровой нагрузки общее расчетное время нагрузки составляло 10^3…10^4 с.

Выполненные испытания показали, что малоцикловую выносливость симметричных неразомкнутых соединений составляют нагрузки, которым соответствуют деформации 0,4λ₀ (λ₀ – граничная деформация соединения). Кроме того, несущая способность неразомкнутых соединений при малоцикловых нагрузках более чем в два раза превышает несущую способность, определяемую по нормативным документам.

Установлено, что при определении несущей способности нагруженного соединения по действующим нормативным документам целесообразно учитывать малоцикловые нагрузки с помощью коэффициента условий работы γ₀с, на который необходимо перемножить минимальное значение несущей способности.

Для отмеченного уровня нагрузки коэффициент условий работы нагруженного соединения составляет γ₀с = 1,62.

УДК 624.07:69.07

В.И. АЛЕКСЕЕВЕЦ
Научный руководитель С.С. ГОМОН, канд. техн. наук, доц.
«НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ВОДНОГО ХОЗЯЙСТВА И ПРИРОДОПОЛЬЗОВАНИЯ»
Ровно, Украина
УДК 624.012
РАБОТА ВНЕЦЕНТРЕННО СЖАТЫХ ЖЕЛЕЗОБЕТОННЫХ ЭЛЕМЕНТОВ ПРИ МАЛОЦИКЛОВЫХ НАГРУЗКАХ СО ЗНАКОПЕРЕМЕННЫМИ ЭКСЦЕНТРИКАМИ
И.И. АЛЕКСЕЕВЕЦ
Научный руководитель Г.Х. МАСЮК, канд. техн. наук, проф.
«НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ВОДНОГО ХОЗЯЙСТВА
И ПРИРОДОПОЛЬЗОВАНИЯ»
Ровно, Украина

При проектировании внецентренно сжатых железобетонных элементов одним из основных является расчет на действие продольной силы со случайным или расчетным эксцентрисетом, что определяет размеры поперечного сечения и количество арматуры элемента. Методы расчета прочности и деформативности внецентренно сжатых элементов постоянно совершенствуются, однако методика расчета, рекомендованная действующими нормами проектирования, не учитывает влияния малоциклового знакопеременного характера загрузки на изменение физико-механических свойств бетона и изменение напряженно-деформированного состояния, прочности элементов, поскольку данный вопрос изучен недостаточно.

Объектом исследований являются железобетонные колонны с номинальными размерами 100х160х3000 мм. В качестве рабочей арматуры применяются стержни из стали класса A400C диаметром 12 мм, расположенные симметрично. Образцы выполняются из тяжелого бетона класса В25. Для получения физико-механических характеристик бетона из того же замеса изготавливаются бетонные образцы: призмы размером 15х15х60 см и кубы 15х15х15 см.

Полученные новые экспериментальные данные показали, что развитие и стабилизация деформаций зависит от условий малоцикловой нагрузки. При малоцикловых нагрузках, не выше эксплуатационного уровня, стабилизация основных параметров происходит после пяти-семи циклов повторных нагрузок. После двух циклов элементы выше эксплуатационного уровня на пятым цикле, стабилизация прироста деформаций бетона и арматуры происходит к восьмому циклу.

Таким образом, повторные малоцикловые нагрузки с переменными эксцентричеситетами способствуют перераспределению усилий в сечениях внецентренно сжатых железобетонных колонн, увеличивая при этом их прочность. При действии таких нагрузок с уровнями загрузки 0,3 и 0,65 пробы гистерезис в среднем на 7,2…7,5 % и стабилизируются на шестом-седьмом циклах; при 0,3 и 0,8 пробы гистерезис на 8,7…10,8 % и стабилизируются на девятом-десятом циклах.

УДК 691.5:666.96
ИСПОЛЬЗОВАНИЕ ПОЛИМЕРНЫХ ОТХОДОВ В САМОНИВЕЛЮРУЮЩИХСЯ СМЕСЯХ
С.В. ДАНИЛОВ, Д.И. ЖИЛИНСКИЙ, К.Ю. СЛИЗКИЙ
Научный руководитель Р.П. СЕМЕНЮК
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Исторически сложилось так, что основное количество полимерных отходов уничтожают путем захоронения в почву или сжигании. Однако расход на уничтожение пластмасс в 6…8 раз превышает расходы на обработку и уничтожение большинства промышленных отходов и в 3 раза – на уничтожение бытовых отходов, а это экономически не выгодно и технически сложно. Кроме того, захоронение, заполнение и сжигание полимерных отходов ведет к загрязнению окружающей среды, к сокращению земельных угодий (организации свалок) и т.д.

Отходы общественного потребления накапливаются у нас дома, на предприятиях общественного питания, а затем попадают на городские свалки. Количество таких отходов непрерывно растет.

Отходы производства или побочные продукты промышленности являлись вторичными материальными ресурсами. Установлено, что использование промышленных отходов позволяет покрыть до 40 % потребности строительства в сырьевых ресурсах.

Исследовалась возможность утилизации полимерных отходов в самоиверлирующихся смесях для напольных покрытий, Дробленый полимерный наполнитель фракцией 1,5…5 мм с насыпной плотностью 340…350 кг/м³, полученный с предприятий «Реплас-М» вводился в смесь в разных пропорциях. Смесь испытывалась на подвижность, а отформованные образцы балочек размером 40х40х160 мм и кубики 100х100х100 мм испытывались на изгиб, сжатие и истираемость.

По результатам испытаний установлено, что с повышением содержания полимера в составе раствора происходит незначительное снижение прочности на сжатие, а предел прочности при изгибе и сопротивление истиранию – увеличиваются. Использование отходов обеспечивает по всем показателям гарантированную прочность.

Кроме того, полимерный наполнитель, входящий в состав, улучшает тепло- и звукоизоляционные свойства стяжек. Состав может быть использован для выполнения стяжек под линолеум, ламинат, паркет и др.
УДК 625
ОБОСНОВАНИЕ ПРИМЕНЕНИЯ ТЕПЛОВЫХ НАСОСОВ
В ИНЖЕНЕРНЫХ СИСТЕМАХ ОБЪЕКТОВ
ПРИДОРОЖНОГО СЕРВИСА

Е.В. ГОРБЕНКОВА
Научный руководитель Е.В. КАШЕВСКАЯ, канд. техн. наук, доц.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

Учитывая четкую направленность современного развития дорожной отрасли на обеспечение удобства и комфорта движения по автомобильным дорогам, следует особое внимание обратить на показатель инженерного обустройства объектов придорожного сервиса (национальная программа развития туризма в Республике Беларусь на 2006 – 2010 годы).

Рациональное использование теплово-энергетических ресурсов представляет собой одну из актуальных проблем (государственная комплексная программа модернизации основных производственных фондов Белорусской энергетической системы, энергосбережения и увеличения доли использования в республике собственных теплово-энергетических ресурсов в 2006 – 2010 годах).

Одним из перспективных путей решения этой проблемы является применение новых энергосберегающих технологий и оборудования, использующих нетрадиционные источники энергии. В качестве приоритетного направления более широкого использования нетрадиционных источников энергии наибольший интерес представляет область тепло-хлadosнабжения, являющаяся сегодня одним из наиболее перспективных направлений теплово-энергетических ресурсов.

Преимущества технологий тепло-хлadosнабжения, использующих нетрадиционные источники энергии, в сравнении с их традиционными аналогами связаны не только со значительными сокращениями затрат энергии в системах жизнеобеспечения зданий и сооружений, но и с их экологической чистотой, а также новыми возможностями в области повышения степени автономности систем теплоснабжения.

Тепло-хлadosнабжение с помощью тепловых насосов относится к области энергосберегающих экологически чистых технологий и получает все большее распространение в мире. Эта технология, наряду с другими энергосберегающими технологиями, относится к технологиям ХХI века.

Повышение требований к объектам придорожного сервиса на автомобильных дорогах Республики Беларусь является безусловным, если республика действительно намерена стать привлекательной для туризма и путешествий не только для граждан своей страны, но и зарубежных гостей.

УДК 624.012.4:539.43
ВЛИЯНИЕ ПОВТОРНЫХ КРАТКОВРЕМЕННЫХ НАГРУЗОК
НА КРИВИЗНУ НЕРАЗРЕЗНЫХ ЖЕЛЕЗОБЕТОННЫХ БАЛОК

В.Е. БАБИЧ
«НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ВОДНОГО ХОЗЯЙСТВА
И ПРИРОДОПОЛЬЗОВАНИЯ»
Ровно, Украина

Неразрезные железобетонные балки широко используются при сооружении разнообразных зданий и сооружений, в процессе эксплуатации которых на них, в большинстве случаев, действуют переменные нагрузки. Согласно действующим нормам проектирования железобетонных конструкций прогиб балок находится в зависимости от их кривизны 1/r (r - радиус продольной оси балки), определение которой осуществляется при действии кратковременных и длительных нагрузок, а возможное действие повторных кратковременных нагрузок не учитывается.

Влияние повторных кратковременных нагрузок на кривизну неразрезных балок по результатам испытаний второй и третьей серии опытов.

Балка 2б-3 нагружалась вторично с $F_{cyc} = 35$ кН в течение семи циклов, при которых наблюдалась стабилизация напряженно-деформированного состояния, потом на восьмом и девятом циклах нагрузка была увеличена до 45 кН, а на десятом цикле максимальная нагрузка составила, как и на первых циклах, $F_{cyc} = 35$ кН. На одиннадцатом цикле балка нагружалась до разрушения.

Балки 3б-2 и 3б-3 подвергались шестикратной нагрузке-разгрузке силами 40 кН, которые составляли приблизительно 60 % от разрушающего усилия (условная кривизна для эксплуатационной нагрузки). В дальнейшем на седьмом цикле балка 3б-2 была дождена до разрушения, а балка 3б-3 дождена силами $F_{cyc} = 55$ кН, которые составляли приблизительно 80 % от разрушающего усилия (имитация возникновения расчетной нагрузки) после чего была дождена и на восьмом цикле дождена до разрушения.

Анализ полученных экспериментальных данных свидетельствует о том, что при повторных нагрузках при уровнях, которые не превышают 60 % от разрушающих, кратковременная кривизна балок уменьшается с одновременным накоплением остаточной кривизны. Стабилизация изменений кривизны происходит в течение шести циклов. Полная кривизна балок при повторных нагрузках может увеличиваться на 9-20 %. Это явление необходимо учитывать при проектировании железобетонных балок, вводя в расчетные формулы дополнительные коэффициенты условий работы. До накопления достаточного количества экспериментальных данных такой коэффициент предварительно можно принять - 1,2.
В связи с образованием отходов промышленности в настоящее время возникает проблема их утилизации. Они могут служить вторичными мате-риальными ресурсами, т.к. по своему составу приближены к природному сырью. Из отраслей материального производства, способных потреблять промышленные отходы, наиболее емкой является промышленность строи-тельных материалов. Это позволяет на их основе создавать новые материа-лы, снижая тем самым их стоимость и решая при этом экологические про-блемы.

Авторами исследовалась возможность применения органических на-полняителей из вторичного сырья для изготовления отделочных компози-ционных материалов.

Полученные составы представляют собой экологически чистые мно-гокомпонентные композиции различных материалов, имеют стабильный состав, гарантирующий определенные технические характеристики, полу-ченные по стабильной технологии. Отличительной чертой изготовлен-ных составов является применение в качестве заполнителя вторичных продуктов и отходов промышленности органического происхождения: растительные волокна, целлюлоза и др.

Каждый из компонентов по-своему влияет на технологические свойства готовых смесей. Например, введение в состав смеси волокон разной длины позволяет повысить трещиностойкость состава и придать отдельны-мой поверхности повышенную декоративность. Структуру и свойства растворной смеси можно, в значительной степени, регулировать в нужном направлении за счет рационального подбора сырья и оптимизации соста-вов в соответствии с заданными требованиями.

Эффективность отделочных материалов проверилась исследованиями составов с различными заполнителями и разными соотношениями между вяжущим веществом и заполнителем. В результате установлен их опти-мальный состав и даны рекомендации по приготовлению и нанесению от-делочных смесей.
Для исследований было изготовлено 6 железобетонных балок таврового сечения с размерами: высотой h= 20 см, шириной полки b= 20 см, шириной ребер l=10 см, толщинами полок t= 2,3 см, длиной l=200 см и с одинаковым армированием, 6 бетонных кубов с размером ребер 15 см и 6 призм размерами 15x15x60 см. Образцы изготовлены из бетона класса B15. Балки армированы продольной рабочей арматурой Ø 20 мм А-Ш.

Кратковременной статической нагрузкой были испытаны три балки таврового сечения с разными размерами толщины полок и определена их прочность. Три следующие балки испытывались малоцикловой повторной кратковременной нагрузкой, верхний уровень которой составлял 0,6 от разрушающей нагрузки (h₃₅ = 0,6, где h₃₅ – верхний уровень малоцикловых повторных нагрузок). Уровень нагрузки h₃₅, выбранный таким образом, чтобы точнее имитировать действие нагрузки в процессе реальной эксплуатации балок. Нижний уровень нагрузки принимался равным h₃₅=0,3. Загрузки и разгрузку образцов в циклах осуществляли постепенно ступенями, величина которых принималась 0,1 от разрушающей нагрузки.

Разрушение большинства балок происходило в сжатой зоне бетона. Разрушение начиналось срезом полок на границе стыка полки и ребра из-за большого изгиба балки и продолжалось крещением бетона в сжатой зоне. В некоторых балках разрушение происходило по наклонным сечениям и сопровождалось проскальзыванием арматуры.

По результатам исследований можно сделать следующие выводы.

1. Повторные нагрузки балок существенно увеличивают максимальный прогиб, а также ширины раскрытия трещин.
2. С увеличением толщины полки несущая способность балки увеличивается, а деформации уменьшаются.
3. Повторные нагрузки эксплуатационных уровней тавровых балок, которые разрушаются по нормальным сечениям, увеличивают несущую способность.
4. Стабилизация остаточных деформаций бетона в сжатой зоне и раскрытие нормальных трещин происходят на 5-7 цикле.
УДК 691.33:004.88
ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ СУХИХ ЗОЛО-ЦЕМЕНТНО-ПЕСЧАНЫХ СМЕСЕЙ С ДОБАВКАМИ МОДИФИКАТОРА ДЛЯ ПОКРЫТИЙ ПОЛОВ

О.М. БОРДЮЖЕНКО
Научный руководитель Р.Н. МАКАРЕНКО, канд. техн. наук, доц.
«НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ВОДНОГО ХОЗЯЙСТВА И ПРИРОДОПОЛЬЗОВАНИЯ»
Ровно, Украина

Полифункциональный модификатор (ПФМ) состоит из порошкообразных добавок – суперпластификатора C-3 и полимерного компонента - сополимера поливиниликата - ПВАБ.

Авторы изучали влияние способа ввода компонентов ПФМ, а также условий хранения на активность сухой смеси. За активность принимали предел прочности призм - 4 x 4 x 16 см в возрасте 28 суток, изготовленных из сухой смеси ее затворением водой до расплывы конуса 240 мм (погружение конуса Стройцилла - 12 см).

При изготовлении сухих смесей в качестве исходных материалов применяли портландцемент, золу-унос, кварцевый песок.

Добавку ПФМ вводили при одно- двух и трехступенчатом перемешивании. При первом способе предварительно смешанные добавки, перемещивались в лопастном растворосмесителе одновременно с остальными компонентами - цементом, золой и песком. При втором способе добавки предварительно смешивались с золой, затем перемешивали с цементом и песком. Третий способ заключался в смешивании золы с добавкой ПФМ и цементно-песчаной смеси. Общая длительность перемешивания изменялась от 3 до 10 мин. Состав смеси: ПФМ 3 % (1,5 % C-3+1,5 % ПВАБ); 3/Де=0,4; n= П/Де=3.

Расход материалов на 1 т сухой смеси в кг: цемент - 225; зола - 90; песок - 678; C-3 - 3,5; ПВАБ - 3,5. Выход литой бетонной смеси с 1 т сухой смеси составил 0,476 м3. Необходимый расход воды дозировался для достижения одинаковой расплывы конуса.

При одновременном введении всех компонентов сухой смеси необходимо однородность достигается через 10 минут перемешивания, о чем свидетельствует стабилизация достигаемой активности и, соответственно, водоотдачи бетонной смеси.

При предварительном притоплении золы с добавкой ПФМ длительность перемешивания сухой смеси может быть сокращена до 5 мин, а при использовании готовой однородной цементно-песчаной смеси до 3 мин. Исследовали также эффективность введения компонентов ПФМ в процессе домола золы и цемента.

УДК 69
ИНЖЕНЕРНО-ЭКОЛОГИЧЕСКИЙ МОНИТОРИНГ УПРАВЛЕНИЯ КАЧЕСТВОМ АВТОМОБИЛЬНЫХ ДОРОГ НА ПРИМЕРЕ РУП «МОГИЛЕВАВТОДОР»

О.В. БУДКОВА
Научный руководитель Е.В. КАШЕВСКАЯ, канд. техн. наук, доц.
Государственное учреждение высшего профессионального образования
«БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»
Могилев, Беларусь

За основу исследования инженерно-экологического мониторинга управления качеством автомобильных дорог была взята организация РУП «Могилевавтодор».

Автором был проведен анализ технико-эксплуатационного состояния автомобильных дорог за период 2006-2008 гг. Основными критериями, определяющими ТЭС автомобильных дорог является ровность покрытия, прочность дорожной одежды, дефектность покрытия, сцепление на покрытии, криволинейность, ширина покрытия. В результате исследований были построены диаграммы транспортно-эксплуатационного состояния сети автомобильных дорог РУП «Могилевавтодор» по данным диагностики за период 2006-2008 гг. Транспортно-эксплуатационное состояние сети автомобильных дорог РУП «Могилевавтодор» показывает, что 53,1 % автомобильных дорог соответствует нормам, т.е не требует ремонта, а 46,9 % автомобильных дорог требует текущего, либо капитального ремонта.

Были изучены технологии производства рабочей DУУ-71 (г. Могилев): устройства поверхностной обработки дорожным битумом на автомобильных дорогах общего пользования, а также ямочный ремонт дорог. Также рассмотрена производственная база DУУ-73 (г. Осиповичи), которая состоит из 2 промплощадок: производственная база, расположенная в г. Осиповичи и линейно-дорожная дистанция №731, расположенная на 2 км автомобильной дороги Осиповичи-Барановичи.

Большое внимание было удалено вопросам системы управления окружающей среды ISO 14000, системы управления охраной труда ISO 18000, а также инженерно-экологической мониторинг РУП «Могилевавтодор».

В работе также было проведено сравнение использованных технологий РУП «Могилевавтодор» с экономической точки зрения и приняты наиболее экономически эффективные решения для данной организации.